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1 Simplest setting: Curves in R2

We consider an immersed curve γ : [a, b] → R2 (i.e. γ′(u) 6= 0 for all u ∈ [a, b]). Since γ is
immersed we can define the arc length function

s(u) :=

∫ u

a

|γ′(r)|dr
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for each u ∈ [a, b]. This is a diffeomorphism [a, b] → [0, L] where L = s(b) is the length of γ.
Consequently we can reparametrise γ by arc length via the composition

σ = γ ◦ s−1 : [0, L]→ R2.

It is easy to check that |σ′(u)| ≡ 1 on [0, L]. Indeed from the definition of s we see that

s′(u) = |γ′(u)|,

so it follows that

σ′(u) = γ′(s−1(u))(s−1)′(u) =
γ′(s−1(u))

s′(s−1(u))
=

γ′(s−1(u))

|γ′(s−1(u))|
.

Taking norms we get precisely the desired result. Differentiating the identity |σ′(u)| ≡ 1 we get
〈σ′′(u), σ′(u)〉 = 0, or in other words σ′′ ⊥ σ′. In particular since σ′ is tangent to the curve, σ′′

is normal to the curve. We define ~k = σ′′(u) to be the curvature vector at u. If we choose a
continuous unit normal N(u) to the curve, we may define the (signed) scalar curvature k(u) by

~k(u) = k(u)N(u)

or equivalently
k(u) = 〈~k(u), N(u)〉.

Notice that the sign of k will depend on the choice of N , but ~k is well defined regardless of the
choice we make. As a concrete example of the above, suppose that γ = (γ1, γ2) and choose

N =
−γ′2e1 + γ′1e2

|γ′1e2 − y′2e1|
,

then

k(u) =
γ′1γ

′′
2 − γ′2γ′′1

((γ′1)2 + (γ′2)2)3/2

∣∣∣∣
u

We can now define mean curvature flow for curves in the plane, which is also called curve shortening
flow.

Definition. A one parameter family of curves

Γ : [a, b]× [0, T )→ R2 γt(·) = Γ(·, t)

is a curve shortening flow starting at the initial curve γ0 if

∂Γ
∂t

(r, t) = kγt(r)Nγt(r)
Γ(r, 0) = γ0(r).

(1.1)

Henceforth we will suppress the subscript γt which was included here only for emphasis of
the time dependence on the right hand side. We will also assume that γ0 is smooth, closed and
embedded. That is to say that γ0(a) = γ0(b) and γ has no self-intersections (other than at the
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endpoints).
Note that the PDE in the definition of curve shortening flow could also be stated as

∂γ

∂t
=
∂2γ

∂s2

where on the right hand side we use the notation ∂2/∂s2 to denote the second derivative with
respect to arc length. Superficially this looks like the heat equation which is of course very well
understood. However it is important to note that because arc length is not preserved under the
flow, the right hand side is in fact not linear. To see this in more detail we rewrite the equation
(1.1) in local (extrinsic) coordinates. Specifically we write the flow as the one parameter family
of curves γ : [a, b]× [0, T )→ R2 : (u, t) 7→ γ(u, t) and compute the evolution

∂γ

∂t
=

∂

∂s

(
∂γ

∂u

∂u

∂s

)
=

∂

∂s

(
1

v

∂γ

∂u

)
where v = |∂γ/∂u|. We therefore have ∂/∂s = v−1∂/∂u. Continuing the computation

∂γ

∂t
=

1

v

∂

∂u

(
1

v

∂γ

∂u

)
=

1

v2

∂2γ

∂u2
− 1

v4

(
∂γ

∂u
· ∂

2γ

∂u2

)
∂γ

∂u
,

or in coordinates, writing γ = (γ1, γ2) we have for j = 1, 2

∂γj
∂t

=
1

v2

∂2γj
∂u2

− 1

v4

(
2∑
i=1

∂γi
∂u

∂2γi
∂u2

)
∂γj
∂u

=
2∑
i=1

1

v2

(
δij −

1

v2

∂γi
∂u

∂γj
∂u

)
∂2γi
∂u2

=
2∑
i=1

aij
∂2γi
∂u2

.

From the above representation the non-linearity is much clearer. The equation is however still
at least quasi-linear (linear in its highest order derivatives), and parabolic. We can compute the
trace and determinant of the matrix aij

det(aij) =
1

v4

((
1− 1

v2

(
∂γ1

∂u

)2
)(

1− 1

v2

(
∂γ2

∂u

)2
)
− 1

v4

(
∂γ1

∂u

)2(
∂γ2

∂u

)2
)

= 0

which follows because v−2
(
(∂γ1/∂u)2 + (∂γ2/∂u)2) = 1. Similarly one can check that

trace(aij) =
1

v2
> 0.

Hence the eigenvalues of aij are everywhere non-negative, but one of them is always zero. This is
the sense in which the equation is degenerate. Degeneracy is typical of geometric flows.
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Theorem 1.1 (Short time existence). Given γ0 as above, there exists T > 0 such that (1.1) has
a unique smooth solution valid for t ∈ [0, T ).

We will not discuss the proof here, instead see [16].

Example. Suppose that γ(θ) = (cos θ, sin θ) parametrises the unit circle in R2 centred at the
origin. We consider the curve shortening flow of the circle radius R0 which is parametrised by
γ0 = R0γ. By symmetry one expects the curve shortening flow of the circle to remain a circle with
a possibly different radius. Hence we expect a solution of the form γt = R(t)γ with R(0) = R0.
One can compute easily that the curvature vector of γt points inward and has magnitude R(t)−1,
which we may write in terms of γ as −R(t)−1γ. Hence if γt is a curve shortening flow we must
have

∂

∂t
γt = R′(t)γ = − 1

R(t)
γ

which implies that R′(t) = −(R(t))−1. It is easily seen that the solution is given by R(t) =√
R2

0 − 2t. This tells us that the flow can only exist smoothly for a finite time, as at time
t = R2

0/2 the curve will collapse down to a point.

We now state some facts about curve shortening flow, some with proof.

(1) For a curve shortening flow as above we have the identity

d

dt
(length(γt)) = −

∫
|~k|2ds,

where ds denotes the integral with respect to arc length. In particular this tells us that the
length of the curve under curve shortening flow is decreasing.

Proof. Recall that the length of γt is given explicitly by

length(γt) :=

∫ b

a

|γ′t(u)|du.

We define unit tangent vectors and speed of the parametrisation of γt as follows

Tt(u) :=
γ′t(u)

|γ′t(u)|
vt(u) := |γ′t(u)|.

We now compute dvt/dt.

d

dt
(vt)

2 =
d

dt
〈γ′t, γ′t〉 = 2

〈
γ′t,

d

dt
γt

〉
= 2

〈
γ′t,

d

du
(kN)

〉
= 2

〈
γ′t, k

dN

du
+N

dk

du

〉
= 2k

〈
γ′t,

dN

du

〉
.
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The well known Frenet formulas tell us that

dT

du
= vkN

dN

du
= −vkT

so
d

dt
(vt)

2 = 2k〈vT,−vkT 〉 = −2k2v2,

from which is follows that
dv

dt
= −k2v.

The main claim now easily follows by differentiating under the integral.

(2) The flow satisfies an avoidance principle. That is to say if γ1
t and γ2

t are both curve shortening
flows existing smoothly on an interval [0, T ) and such that γ1

0 ∩γ2
0 = ∅. Then γ1

t ∩γ2
t = ∅ for

all t ∈ [0, T ). This is also true of mean curvature flow of hypersurfaces in higher dimensions.
In the higher codimension it is no longer true.
The rough idea is as follows. Suppose that the claim were not true. Since the flows are
compact, evolving smoothly, and initially disjoint, there is a positive first time t1 > 0 where
they touch. At the point where they touch, the curvature vectors must point in the same
direction. Indeed, the intersection point cannot be transverse, since otherwise at a slightly
earlier time the curves would still intersect. Hence the tangent lines coincide and so the
curvature vectors lie on the same line. Moreover the curvature vectors must point in the
same direction (else once again, there must have been an intersection at a slightly earlier
time). Finally the curvature of the ”inner” curve must be greater than or equal to the
curvature of the outer curve at the intersection point. If we have a strict inequality that
actually then implies once again that there must have been a previous intersection. Thus
we arrive at a contradiction. We will later make this picture rigorous using the maximum
principle for parabolic PDEs.

(3) The flow exists smoothly for a finite time. This follows immediately from the avoidance
principle. Indeed since the initial curve is compact, it is bounded. Hence we can enclose it
in a suitably large circle. The circle we know shrinks to a point in finite time (T = R2/2
where R is the radius of the initial circle), hence by the avoidance principle the evolution of
the inner curve cannot exist smoothly for this entire time.

Theorem 1.2 (Gage-Hamilton). A closed embedded convex curve remains convex and shrinks to
a round point in finite time under curve shortening flow.

The meaning of shrinking to a round point is that if we rescale the flow so that enclosed area
is constant then the curve converges smoothly to a circle.

Theorem 1.3 (Grayson). Any embedded closed curve under curve shortening flow becomes convex
in finite time, and hence shrinks to a round point.

We will prove these later in the course, but the proof is long and requires more machinery
than we have so far developed. Hence we will now simply state some further results about curve
shortening flow.
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Lemma 1.4. If A(t) denotes the area enclosed by the moving curve at time t, then A(t) =
A(0)− 2πt.

Corollary 1.5. The flow γt becomes extinct at time t = A(0)/2π.

Proof. This follows immediately from Grayson’s theorem and the preceding lemma.

Lemma 1.6. If T = ∂γ
∂u
/
∣∣∂γ
∂u

∣∣ is the unit tangent in the direction of the parametrisation and N is
the inward pointing unit normal then

∂T

∂t
=
∂k

∂s
N

∂N

∂t
= −∂k

∂s
T

where s is the arc length.

Proof. First we observe that

∂

∂t

∂

∂s
=

∂

∂t

(
1

v

∂

∂u

)
=

1

v

∂

∂t

∂

∂u
− 1

v2
(−k2v)

∂

∂u

=
1

v

∂

∂u

∂

∂t
+ k2 ∂

∂s

Hence

∂

∂t
T =

∂

∂t

∂γ

∂s
=
∂(kN)

∂s
+ k2∂γ

∂s

= k
∂N

∂s
+
∂k

∂s
N + k2T

= −k2T +
∂k

∂s
N + k2T =

∂k

∂s
N.

To calculate the formula for ∂N/∂t we use the fact that 〈N, T 〉 ≡ 0.

Proof of Lemma 1.4. By the divergence theorem∫
Ω

divXdxdy = −
∫
γ

〈X,N〉ds.

Choose X(x, y) = (x, y), so that divX ≡ 2. Then

2A(t) = −
∫
γt

〈γ,N〉ds = −
∫ b

a

v〈γ,N〉du.

Differentiating in t we have

2A′(t) = −
∫ b

a

(〈
∂γ

∂t
,N

〉
v +

〈
γ,
∂N

∂t

〉
v + 〈γ,N〉∂v

∂t

)
du

= −
∫ b

a

(
kv −

〈
γ,
∂(kT )

∂u

〉
+

〈
γ,
∂T

∂u
k

〉
− k2〈γ,N〉v

)
du

= −
∫ b

a

(
kv +

〈
∂γ

∂u
, kT

〉)
du

= −2

∫
γt

kds = −4π
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Hence, by integrating we have
A(t) = A(0)− 2πt

1.1 Towards the proof of Grayson’s theorem

The proof we will present in this course is not the original proof of Gage-Hamilton-Grayson
theorem (which is interesting in its own right, and can be found in the original papers of Gage-
Hamilton [12] and Grayson [13] but rather one which utilises some more modern ideas which
weren’t known at the time of the original proofs. One of the key ingredients is an idea of Huisken’s.
The idea is to rule out possibilities such as the following picture by considering the ratio of extrinsic
distance to intrinsic distance and showing it is bounded below. What Huisken was able to do [15]
is show that a quantity related to this ratio is monotone under curve shortening flow.
Let us be more precise. We suppose that γ(·, t) : S1 → R2 is an embedded closed curve moving
by curve shortening flow. We define the extrinsic distance

Dt : S1 × S1 → R : (p, q) 7→ |γt(p)− γt(q)|

and the intrinsic distance

lt : S1 × S1 → R = min

{∣∣∣∣∫ q

p

|γ′t(u)|du
∣∣∣∣ , L− ∣∣∣∣∫ q

p

|γ′t(u)|du
∣∣∣∣} (1.2)

where L = L(t) is the length of γt. Notice that lt is not smooth at points (p, q) where lt(p, q) = L/2.
For this reason we define the related quantity

ψt(p, q) :=
L

π
sin

(
πl

L

)
Since sin(πs/L) = sin(π(L − s)/L), it follows that ψt is smooth. Now the ratio Dt/ψt is well
defined away from the diagonal of S1×S1, and extends continuously to the diagonal if we impose
Dt/ψt ≡ 1 on the diagonal. We can now prove the monotonicity result of Huisken, originally
proved in [15]

Theorem 1.7. The minimum of Dt/ψt is non-decreasing in t if (γt) is a curve shortening flow.

Proof. Because of out definition of Dt/ψt on the diagonal, we always have that

min
S1×S1

Dt

ψt
≤ 1.

It will suffice to show that at any time t0 ∈ (0, T ), if the minimum is strictly less than 1, we have
at any point (p, q) where the minimum is attained that(

∂

∂t

∣∣∣∣
t=t0

Dt

ψt

)
(p, q) > 0.
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It will then follow that minS1×S1 Dt/ψt is increasing locally near t0. Moreover, if the minimum ever
becomes 1, then it must remain 1 under the flow. We calculate using the fact that ∂v/∂t = −k2v

∂

∂t

∣∣∣∣
t=t0

(
Dt

ψt

)
(p, q) =

∂

∂t

∣∣∣∣
t=t0

|γ(p, t)− γ(q, t)|
L
π

sin
(
πl
L

)
=

1
L
π

sin
(
πl
L

) 〈 γ(p, t)− γ(q, t)

|γ(p, t)− γ(q, t)|
, ~k(p, t)− ~k(q, t)

〉
− Dt(

L
π

sin
(
πl
L

))2

(
sin
(
πl
L

)
π

∫
γt

k2ds+
l

π
cos

(
πl

L

)
π

L

∫
[p,q]

ksds

−L
π

cos

(
πl

L

)
πl

L2

∫
γt

k2ds

)
=

1

ψt0

〈
ωt0 ,

~k(q, t0)− ~k(p, t0)
〉

+
Dt0

πψ2
t0

sinα

∫
γt0

k2ds+
Dt0

ψ2
t0

cosα

∫
[p,q]

k2ds

− Dt0l

ψ2
t0L

cosα

∫
γt0

k2ds

where we defined

α :=
lπ

L
ωt0 :=

γ(q, t0)− γ(p, t0)

Dt0(p, q)
(so |ωt0| = 1)

so

∂

∂t

∣∣∣∣
t=t0

(
Dt

ψt

)
(p, q) =

1

ψt0

〈
ωt0 ,

~k(q, t0)− ~k(p, t0)
〉

+
Dt0

ψ2
t0

cosα

∫
[p,q]

k2ds

+
Dt0

ψ2
t0π

sinα
(

1− α

tanα

)∫
[p,q]

k2ds.

Notice that since 0 < α ≤ π/2, 1− α/ tanα > 0.
Claim: Let e1 := ∂γ(p, t0)/∂s and e2 := ∂γ(q, t0)/∂s. Then

(i) 〈ωt0 , e1〉 = 〈ωt0 , e1〉 =
Dt0
ψt0

cosα

(ii) If e1 = e2 then

〈ωt0 , ~k(q, t0)− ~k(p, t0)〉 ≥ 0

(iii) If e1 6= e2 then

〈ωt0 , ~k(q, t0)− ~k(p, t0)〉 ≥ −4π2

L2
Dt0 .

Given the claim, the proof now follows because if e1 = e2 then it immediately follows that

∂

∂t

∣∣∣∣
t=t0

(
Dt

ψt

)
(p, q) > 0.

On the other hand if e1 6= e2 then

∂

∂t

∣∣∣∣
t=t0

(
Dt

ψt

)
(p, q) ≥ 4π2Dt0

L2ψt0
+
Dt0 sinα

ψ2
t0π

(
1− α

tanα

)∫
γt

k2ds+
Dt0

ψ2
t0

cosα

∫
[p,q]

k2ds.
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Now by Gauss-Bonnet we have

2π =

∫
γt

kds ≤ L1/2

(∫
γt

k2ds

)1/2

⇒
∫
γt

k2ds ≥ 4π2

L

and moreover if the angle between e1 and e2 is β then

β2 =

(∫
[p,q]

kds

)2

≤ l

∫
[p,q]

k2ds

and so ∫
[p,q]

k2ds ≥ β

l
.

By (i) of the claim we have

cos

(
β

2

)
=
Dt0

ψt0
cosα < cosα

and so β/2 > α or equivalently β2 > 4α2. Therefore

∂

∂t

(
Dt

ψt

)∣∣∣∣
t=t0

(p, q) >
−4π2Dt0

L2ψt0
+

Dt0

ψ2
t0π

sinα
(

1− α

tanα

) 4π2

L
+
Dt0

ψ2
t0

cosα
4α2

L

= −4π2Dt0

L2ψt0
+

Dt0

ψ2
t0π

sinα
π2

L
− 4π2

L

Dt0

ψ2
t0

α cosα +
4Dt0α

2 cosα

ψ2
t0l

=
4Dt0

ψ2
t0

α cosα
(α
l
− π

L

)
= 0

It now only remains to check the claim. Proof of claim: Let σ1 and σ2 be values of arclength
corresponding to the points p and q and assume without loss of generality that σ2 > σ1. Then we
define (in a neighbourhood of (σ1, σ2) the function

F (s1, s2) :=
Dt0(s1, s2)

ψt0(s1, s2)
.

We have abused notation slightly here, since Dt0 and ψt0 were not originally defined as functions
of arclength, however we simply do the natural thing and identify si with the corresponding points
p and q. Parts (i), (ii) and (iii) of the claim now follows from calculating first and second variation
of F at (σ1, σ2) and using the fact that F attains a minimum here. Specifically

(i) We have
d

ds

∣∣∣∣
s=0

F (σ1 + s, σ2) = 0 =
d

ds

∣∣∣∣
s=0

F (σ1, σ2 + s)

from which it follows that 〈ωt0 , e1〉 = 〈ωt0 , e2〉 =
Dt0
ψt0

cosα

(ii) If e1 = e2 then we compute second variation in the direction (e1, e2) to get

d2

ds2

∣∣∣∣
s=0

F (σ1 + s, σ2 + s) ≥ 0 ⇒ 〈ωt0 , ~k(σ2, t0)− ~k(σ1, t0)〉 ≥ 0.
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(iii) If on the other hand e1 6= e2 then computing second variation in the direction (e1,−e2)

d2

ds2

∣∣∣∣
s=0

F (σ1 + s, σ2 − s) ≥ 0 ⇒ 〈ωt0 , ~k(σ2, t0)− ~k(σ1, t0)〉 ≥ −4π2Dt0

L2
(1.3)

We will return to the proof of the Gage-Hamilton-Grayson result later in the course after we
have developed more machinery. The remaining ingredients are valid in higher dimensions also,
so we will now move on to introduce mean curvature flow in general dimensions.

2 Minimal surfaces

In this section we cover some basic facts about minimal surfaces, which are static solutions of
mean curvature flow, i.e. critical for area. There are many parallels between the the study of
minimal surfaces and mean curvature flow, in particular we will cover the monotonicity formula
and Allard regularity, both of which have analogous versions for mean curvature flow.

2.1 Geometry of hypersurfaces in Rn+1

This section is based on chapter 7 of [19]. Suppose that Mn ⊂ Rn+1 is a Ck hypersurface. This
means that for any x ∈M , there are open sets U , V ⊂ Rn+1 such that x ∈ U , 0 ∈ V and there is
a Ck diffeomorphism φ : V → U such that φ(0) = x and

φ(V ∩ {xn+1 = 0}) = M ∩ U.

We call φ a local representation of M at x. The tangent space to M at y ∈M is defined

TyM := {γ′(0) | γ : (−ε, ε)→ Rn+1 for some ε > 0 is C1, γ((−ε, ε)) ⊂M γ(0) = y}.

One can check that given any local representation φ of M at y, the set{
∂φ

∂x1
(0), . . . ,

∂φ

∂xn
(0)

}
forms a basis for TyM .
Given a function f : M → RN , we say f is C l if there is an open set U ⊂ Rn+1 such that M ⊂ U ,
and a C l function f̄ : U → RN such that f̄ |M = f .
Given a tangent vector τ ∈ TyM and a C1 function f : M → RN we define the directional
derivative of f at y in the direction τ by

Dτf(y) =
d

dt

∣∣∣∣
t=0

f(γ(t)) ∈ RN

where γ is any C1 map γ : (−ε, ε) → Rn+1 such that γ((−ε, ε)) ⊂ M , γ(0) = y and γ′(0) = τ .
One can easily verify that this definition is indeed independent of the choice of γ. The directional
derivatives induce a linear map, the differential. Indeed given a C1 function f : M → RN and
y ∈M we define

dfy : TyM → RN : dfy(τ) = Dτf(y).
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2.2 Metric concepts

The following concepts depend on the choice of metric, i.e. the inner product we choose on our
tangent spaces. We will always simply consider the standard Euclidean inner product on the
ambient space restricted to the tangent planes. Given f : M → R a C1 map, we define the
gradient of f at y ∈M by

∇Mf(y) :=
n∑
i=1

Dtif(y)τi ∈ TyM,

where {τ1, . . . , τn} is any orthonormal basis for TyM . This is simply the projection of the ambient
gradient of any extension of f at y projected onto the tangent space, i.e.

∇Mf(y) = (Df̄(y))T = Df̄(y)− (Df̄(y) · ν)ν.

In a similar manner, given a C1 vectorfield X : M → Rn+1 (which is not necessarily tangential)
we define the divergence of X at y by

divMX(y) :=
n∑
i=1

τi ·DτiX(y),

where {τ1, . . . , τn} is any orthonormal basis for TyM . Equivalently, if {e1, . . . , en+1} is an or-
thonormal basis for Rn+1, then

divMX(y) =
n+1∑
i=1

ej · ∇MXj(y),

where Xj −X · ej.

Theorem 2.1. If X : M → Rn+1 is a C1 tangential vectorfield (i.e. X(y) ∈ TyM for every
y ∈M) and if the closure M of M is a hypersurface with boundary, then∫

M

divMXdHn = −
∫
∂M

X · ηdHn−1,

where η is the inward pointing conormal to ∂M (i.e. normal to ∂M , and tangential to M).

2.3 Curvature

We assume now that M is at least C2. We define the second fundamental form at y ∈ M as
follows

By : TyM × TyM → (TyM)⊥ : By(τ, η) := −(τ ·Dην)ν,

where ν is a choice of unit normal. Notice that since ν appears twice, By is independent of the
choice of orientation. The second fundamental form measures normal curvature relative to the
ambient (in our case Euclidean) space. This is illustrated by the fact that By(τ, τ) = (γ′′(0))⊥ =
(γ′′(0) · ν)ν for any C2 curve γ : (−ε, ε)→ M with γ(0) = y, γ′(0) = τ . Indeed this follows since
ν(γ(t)) · γ′(t) ≡ 0, so differentiating both sides with respect to t at 0 yields

Dτν(y) · τ + ν(y) · γ′′(0) = 0

11



which implies
By(τ, τ) · ν = −Dτν(y) · τ = ν · γ′′(0).

More generally if τ, η ∈ TyM , φ : V → M where V ⊂ R2 is open and 0 ∈ V , ∂φ(0)/∂x1 = τ , and
∂φ(0)/∂x2 = η and φ(0) = y, then it follows that

By(τ, η) =

(
∂2φ

∂x1∂x2
(0)

)⊥
.

Notice it immediately follows from this that By is symmetric.
We now define the mean curvature to be the trace of the second fundamental form. That is for
each y ∈M we define

~H(y) := traceBy =
n∑
i=1

By(τi, τi) = −
n∑
i=1

(τi ·Dτiν)ν = −(divMν)ν.

If X : M → Rn+1 is a C1 vectorfield (not necessarily tangential), then we can decompose X into
tangential and normal parts X(y) = XT (y) +X⊥(y) (note that X⊥(y) = (X(y) · ν)ν and so

divMX
⊥ = (∇M(X · ν)) · ν + (X · ν)divMν = −X · ~H,

where the first term vanishes because the gradient is tangential. Consequently, using the diver-
gence theorem and the above calculation we have∫

M

divMXdHn = −
∫
M

X · ~HdHn −
∫
∂M

(X · η)dHn−1.

In particular if X is compactly supported away from ∂M we simple have∫
M

divMXdHn = −
∫
M

X · ~HdHn.

2.4 First variation formula

Consider M ⊂ U with ∂M ∩ U = ∅ and a vectorfield X ∈ C1
c (U ;Rn+1). Let

φt : U → Rn+1 φt(x) = x+ tX(x),

which is one to one for small t since X is compactly supported and C1. Then we have the following
theorem.

Theorem 2.2 (First variation formula). With the above set-up

d

dt

∣∣∣∣
t=0

Hn(φt(M)) =

∫
M

divMXdHn = −
∫
M

X · ~HdHn

Remark. Notice that this formula in particular implies that mean curvature flow is like the
L2-gradient flow for area, since by the first variation formula

d

dt

∣∣∣∣
t=0

Hn(φt(M)) ≥ −
(∫

M

|X|2dHn

)1/2(∫
M

|H|2dHn

)1/2

with equality if and only if X is a scalar multiple of ~H. Hence to decrease area as quickly as
possible we flow in the direction of mean curvature.

12



Proof of first variation formula. We denote Mt := φt(M). We wish to show that

δM(X) :=
d

dt

∣∣∣∣
t=0

Hn(Mt ∩ sptX) =

∫
M

divMXdHn.

By the area formula (see for example [8]) we have

Hn(Mt ∩ sptX) =

∫
M

JψtdHn

where ψt = φt|M and Jψt =
√

det(dψ∗t ◦ dψt) is the Jacobian. Now

dψt|x(τ) = Dτψt = τ + tDτX.

We fix an orthonormal basis {τ1, . . . , τn} of TxM and an orthonormal basis {e1, . . . , en+1} for Rn+1,
then dψt|x has matrix representation

aij := ei · τj + tDτjX
i

for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ n. Therefore dψt|∗x ◦ dψt|x has the matrix

bij =

∫ n+1

l=1

alialj =
n+1∑
l=1

(el · τi + tDτiX
l)(el · τj + tDτjX

l

= δij + t (τj ·DτiX + τi ·DτjX)︸ ︷︷ ︸
=:pij

+t2 (DτiX ·DτjX)︸ ︷︷ ︸
=:qij

.

Taylor expanding the determinant,

det(I + tP + t2Q) = 1 + ttraceP + t2
(

traceQ+
1

2
(traceP )2 − 1

2
trace(P 2)

)
+O(t3).

Moreover we have that √
1 + x = 1 +

1

2
x− 1

8
x2 +O(x3),

hence

Jψt = 1 +
1

2
ttraceP +

1

2
t2
(

traceQ+
1

2
(traceP )2 − 1

2
trace(P 2)

)
− 1

8
t2(traceP )2 +O(t3).

Notice that traceP = 2divMX and so it immediately follows from differentiating under the integral
that

δM(X) =

∫
M

divMXdHn.

We can also now compute the second variation under the following additional assumptions

(1) M is orientable, and

13



(2) X is a normal vectorfield.

Indeed we can then write X(x) = ξ(x)νx for some ξ ∈ C1
c (M ;R), where ν is a continuous choice

of unit normal. Then with X = ξν we have

traceP = 2divM(ξν) = 2ξdivMν = −2ξ( ~H · ν),

also

traceQ =
n∑
i=1

Dτi(ξν) ·Dτj(ξν) =
n∑
i=1

ξ2|Dτiν|2 + (Dτiξ)
2 = ξ2|Bx|2 + |∇Mξ|2,

and finally

trace(P 2) =
n∑

i,l=1

pilpli =
n∑

i,l=1

(τl ·Dτi(ξν) + τi ·Dτl(ξν))2

= 4
n∑

i,l=1

ξ2h2
li

= 4ξ2|Bx|2.

Therefore we can calculate the second variation, with X = ξν as

δ2M(X,X) : =
d2

dt2

∣∣∣∣
t=0

Hn(Mt ∩ sptX)

=

∫
M

ξ|B|2 + |∇ξ|2 + 2ξ2H2 − ξ2|B|2 −H2ξ2dHn

= 2

∫
M

|∇ξ|2 − ξ2|B|2 + ξ2H2dHn.

Definition. We say that M is stationary in U if δM(X) = 0 for all X ∈ C1
c (M ;Rn+1). We say

that M is stable in U if δ2M(X,X) ≥ 0 for all X ∈ C1
c (U ;Rn+1).

Suppose that M is stationary in some open set U ⊂ Rn+1. Then let X = ξej where ξ ∈ C1
c (U),

and ej is the jth basis vector for Rn+1. Then by the first variation formula∫
M

divM(ξej)dHn =

∫
M

∇Mξ · ejdHn =

∫
M

∇Mξ · ∇MxjdHn = 0

for each j = 1, . . . , n + 1. This implies ∆Mx
j = 0 for each j = 1, . . . , n + 1. A similar argument

establishes that, without the assumption of stationarity, we always have ~H(x) = ∆mx.

Corollary 2.3. There are no compact, stationary hypersurfaces (in fact no compact stationary
submanifolds) in Rn+1.

Proof. Apply the maximum principle to the coordinated functions restricted to M to conclude
that each coordinate function is constant. Alternatively, since M is compact we can let ξ = xj in
the formula ∫

M

∇Mxj · ∇MξdHn

for each j = 1, . . . , n+ 1, and again we get a contradiction.
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2.5 Monotonicity formula

The monotonicity formula is a very powerful consequence of the first variation formula.

Theorem 2.4 (Monotonicity formula). Suppose that Mn ⊂ U where U ⊂ Rn+1 is open (more
generally we can let U ⊂ Rn+k). Suppose that M is stationary in U , then for all y ∈ U (note we
don’t impose y ∈M) and for 0 < σ < ρ < dist(y, ∂U) we have

Hn(M ∩Bρ(y)

ρn
− H

n(M ∩Bσ(y)

σn
=

∫
M∩(Bρ(y)\Bσ(y))

|(x− y)⊥|2

|x− y|n+2
dHn(x). (2.1)

Here Bρ(y) and Bσ(y) are ambient balls in Rn+1 (or Rn+k), (x− y)⊥ is the projection of (x− y)
onto (TxM)⊥.

Remark. In particular we have that for all fixed y, the mass ratios ρ−nHn(M ∩ Bρ(y)) are
monotone, so we can define the density at y as

ΘM(y) := lim
ρ→0

Hn(M ∩Bρ(y))

ωnρn
.

Passing to the limit σ ↘ 0 in (2.1) we have

Hn(M ∩Bρ(y)

ρn
−ΘM(y) =

∫
M∩Bρ(y)

|(x− y)⊥|2

|x− y|n+2
dHn(x).

Proof of the monotonicity formula. Fix y ∈ U , 0 < σ < ρ < dist(y, ∂U) and let X(x) := (x −
y)η(x) where η ∈ C1

c (U ;R). Then

divMX = η(x)
n+1∑
j=1

ej · (pTxMej) + (x− y) · ∇Mη(x)

= nη(x) + (x− y) · ∇Mη(x).

Thus, by stationarity and the first variation formula we have

n

∫
M

η(x)dHn +

∫
M

(x− y) · ∇Mη(x)dHn = 0.

We now fix τ ∈ (σ, ρ), and δ > 0 such that τ + δ < ρ. We take γ : [0,∞) → [0,∞) to be a
smooth approximation function with γ(t) ≡ 1 for t ≤ τ , γ(t) ≡ 0 for t ≥ τ + δ, and γ linear on
[τ, τ+δ]. For simplicity we will pretend we can choose precisely this γ, but a simple approximation
argument will validate this choice. We then choose η(x) := γ(|x − y|) in the above formula and
get

0 = n

∫
M

η(x)dHn +

∫
M∩(Bτ+δ\Bτ )

(x− y) ·
(
γ′(|x− y|)pTxM(x− y)

|x− y|

)
dHn

= n

∫
M

η(x)dHn − 1

δ

∫
M∩(Bτ+δ\Bτ )

|pTxM(x− y)|2

|x− y|
dHn.
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Let δ → 0, then

nHn(M ∩Bτ (y))− d

dτ

(∫
M∩Bτ (y)

|pTxM(x− y)|2

|x− y|
dHn

)
= 0

which implies, by the coarea formula, that

0 = nHn(M ∩Bτ (y))−
∫
M∩∂Bτ (y)

|pTxM(x− y)|2

|x− y|
dHn−1

= nHn(M ∩Bτ (y))−
∫
M∩∂Bτ (y)

τ − |(x− y)⊥|2

|x− y|
dHn−1.

Rearranging (and dividing through by τ) we find

d

dτ

(
Hn(M ∩Bτ (y))

τn

)
= −n

τ
Hn(M ∩Bτ (y)) +

d

dτ
Hn(M ∩Bτ (y)) =

∫
M∩∂Bτ (y)

|(x− y)⊥|2

|x− y|2

Integrating over [σ, ρ] will evidently yield the desired result.

An immediate consequence is the following.

Corollary 2.5. The density ΘM(·) is upper semi-continuous on U , i.e., if yj, y ∈ U and yj → y
then

ΘM(y) ≥ lim sup
j→∞

ΘM(yj)

Proof. Let ε > 0, then for small ρ we have

ΘM(y) + ε ≥ H
n(M ∩Bρ(y))

ωnρn
≥
Hn(M ∩Bρ−|yj−y|(yj)

ωnρn

=
(ρ− |yj − y|)n

ρn
Hn(M ∩Bρ−|yj−y|(yj))

ωn(ρ− |yj − y|)n

≥
(

1− |yj − y|
ρ

)n
ΘM(yj).

The result now follows.

We will from now on assume that M has no removable singularities in U , i.e. if y ∈ U ∩M
and there exists σ > 0 such that M ∩ Bσ(y) is a smooth, compact, n-dimensional manifold with
boundary contained in Bσ(y), then y ∈M . we then define the singular set of M as

singM := (M \M) ∩ U.

Corollary 2.6. If M is stationary in U , then Hn(singM) = 0.

Proof. Note that ΘM(y) = 1 for all y ∈ regM , and hence by upper semi-continuity we have
ΘM(y) ≥ 1 everywhere. By some measure theory nonsense we know that Hn-almost every y ∈
U \M satisfies

Θ∗M(y) = ΘM(y) = 0,

and so the claim follows.
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2.6 Allard’s Theorem

Let us quickly recap what we know so far. We assume that Mn ⊂ U is a C1 submanifold of
U ⊂ Rn+k open. We furthermore assume that M has no removable singularities and is stationary
in U , which is to say that ∫

M

divMXdHn = 0

for every X ∈ C1
c (U,Rn+k). It then follows that

(i) Hn((M \M) ∩ U) = 0,

(ii) M has no manifold boundary in U (which follows from the first variation formula and the
divergence theorem),

(iii) M is C2 (in fact smooth, even analytic) and ~H = 0 on M .

There are no known examples showing that (i) is sharp. Indeed all known examples satisfy

dimH((M \M) ∩ U) ≤ n− 1

or equivalently
Hn−1+δ((M \M) ∩ U) = 0

for every δ > 0. The following theorem due to Allard is also a consequence of the monotonicity
formula, albeit a highly non-trivial one.

Theorem 2.7 (Allard [2] [19]).

(i) There is a fixed ε = ε(n, k) > 0 such that if y ∈ singM , then ΘM(y) ≥ 1 + ε. In other words,
in order for a singularity to form, there has to be some sort of concentration of area.

(ii) Suppose that U = Bn+k
1 . There is a σ = σ(n, k) ∈ (0, 1) such that if 0 ∈ M , Hn(M ∩

Bn+k
1 )/ωn < 1 + ε, then singM ∩Bn+k

σ = ∅ (so M ∩Bn+k
σ is C∞), and

sup
M∩Bn+kσ

|B| ≤ C,

where C = C(n, k) <∞.

Remark. Scaling and translating (ii) implies the following. Suppose that U = Bn+k
R (z) and

M ⊂ U is stationary with z ∈M . If Hn(M ∩Bn+k
R (z))/(ωnR

n) < 1 + ε, then

sup
M∩Bn+kσR (z)

|B| ≤ C

R
,

where ε, σ and C are fixed constants independent of M and R.

We list some examples of singular stationary hypersurfaces. The simplest example is that of
three lines in the plane meeting at angles of 120◦. More generally one can consider any number
of lines meeting at a point, provided the unit direction vectors pointing away from the meeting
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point sum to 0.
Moving to higher dimensions, if we take the Clifford torus

Σ :=
1√
2
S1 × 1√

2
S1 ⊂ S3 ⊂ R4,

then the cone C(Σ) over Σ

C(Σ) = {λx|λ > 0 x ∈ Σ}
= {x ∈ R4|x2

1 + x2
2 = x2

3 + x2
4}

is stationary in R4, with an isolated singularity at the origin. More generally we can define

Σpq :=

√
p

p+ q
Sp ×

√
q

p+ q
Sq ⊂ Sp+q+1 ⊂ Rp+q+2.

Then C(Σpq) is a stationary cone of dimension p + q + 1 in Rp+q+2. If p and q are large enough,
then this cones are in fact stable, and some of them are even locally area minimising! (That is,
roughly speaking, to say that any compact piece of the cone has smaller area than anything else
with the same boundary).

Theorem 2.8 (Simons [20]). If 2 ≤ n ≤ 6 and M is a hypersurface in Rn+1 with M \M ⊂ {0},
and if M is stationary and stable in Rn+1, and conical (i.e. invariant under rescalings, so if
ηλ(x) := x/λ then ηλ(M) = M); then M is a hyperplane.

Remark. Note that the theorem is false in the case n = 1, as we can consider two transverse
lines crossing at the origin. The theorem is also false if n = 7, as we can take

M = C

(
1√
2
S3 × 1√

2
S3

)
We can check that M is stable. Indeed one can verify by direct computation that ~H(x) = 0 and
that |B|(x) = 6|x|−2 for each x ∈M . Then of course we have that∫

M

divMXdHn = 0

for every X ∈ C1
c (Rn+1 \ {0}). Furthermore if we let X(x) := ξ(x)x/|x|2 where ξ ∈ C1

c (M) then
we have that

divMX =
nξ(x)

|x|2
+ x ·

(
∇ξ(x)

|x|2
− 2ξ(x)pTxM(x)

|x|4

)
.

But on a cone we have x⊥ ≡ 0 so pTxM(x) ≡ x, and so

divMX =
(n− 2)ξ(x)

|x|2
+
x · ∇ξ(x)

|x|2
,

so by minimality

(n− 2)

∫
M

ξ(x)

|x|2
dHn = −

∫
M

x · ∇ξ(x)

|x|2
dHn.
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If we now replace ξ with ξ2 we find

(n− 2)

∫
M

ξ2(x)

|x|2
dHn = −2

∫
M

ξ(x)x · ∇ξ(x)

|x|2
dHn ≤ 2

(∫
M

ξ2(x)

|x|2
dHn

)1/2(∫
M

|∇ξ|2dHn

)1/2

and so
(n− 2)2

4

∫
M

ξ2(x)

|x|2
dHn ≤

∫
M

|∇ξ|2dHn

for every ξ ∈ C1
c (M). So if |B|2(x) ≤ (n− 2)2/(4|x|2) then we recover the stability inequality∫

M

|B|2ξ2dHn ≤
∫
M

|∇ξ|2dHn

3 Minimal Graphs

We now restrict our attention to minimal graphs in particular. That is to say we have the following
set-up. Ω ⊂ Rn is open, u : Ω → R is C1 (or indeed Lipschitz will suffice). We denote by G the
graph of u

G = graph(u) := {(x, u(x))|x ∈ Ω}.

If G is stationary, that is ∫
G

divGXdHn = 0

for every X ∈ C1
c (Ω× R;Rn+1), then by choosing X(x) := ξ̃(x)en+1 where ξ̃(x̃, xn+1) = ξ(x̃) in a

neighbourhood of G, we get
n∑
i=1

∫
Ω

Diu√
1 + |Du|2

DiξdHn = 0,

which is the minimal surface equation in weak form. Alternatively, or indeed equivalently, one
can derive the same equation by considering compactly supported variations of the graph function
itself, i.e. we say the graph of u is stationary if and only if

d

dt

∣∣∣∣
t=0

area(graph(u+ tξ)) = 0

for any ξ ∈ C1
c (Ω). It turns out that solutions of the minimal surface equation are in fact smooth.

Proposition 3.1. If u ∈ C1(Ω) solves the minimal surface equation, then u ∈ C∞(Ω).

Sketch of Proof. Step 1. Since u ∈ C1(Ω), it immediately follows that u ∈ W 1,2
loc (Ω). We can

improve this to u ∈ W 2,2
loc (Ω) using difference quotients, and the fact that u is a solution of the

MSE. This is by now a standard PDE argument, and can be found in, for example, [7].
Step 2. Differentiate the equation to find an equation satisfied by the derivatives of u. More
specifically we choose ξ ∈ C2

c (Ω) and use Dlξ as a test function for some l. Then

0 =

∫
Diu√

1 + |Du|2
DiuDiDlξdHn = −

∫
Dl

(
Diu√

1 + |Du|2

)
DiξdHn.
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Defining w = Dlu this implies

0 =

∫
Ω

(
Diw√

1 + |Du|2
− Diu

(1 + |Du|2)3/2
DjuDjw

)
DiξdHn

⇒ 0 =

∫
Ω

1√
1 + |Du|2

(
δij −

DiuDju

1 + |Du|2

)
DjwDiξdHn

=

∫
Ω

aij(x)DjwDiξdHn,

where we defined

aij(x) =
1√

1 + |Du|2

(
δij −

DiuDju

1 + |Du|2

)
.

The matrix aij is positive definite, indeed

aij(x)ξiξj =
1√

1 + |Du|2

(
|ξ|2 − (ξ ·Du)2

1 + |Du|2

)
≥ |xi|2

(1 + |Du|2)3/2
.

In fact we see that the equation satisfied by w is uniformly elliptic on compact subsets Ω̃ of Ω,
and the aij are also locally bounded. DeGiorgi-Nash-Moser theory then tells us that w ∈ Cα(Ω̃),
i.e. u ∈ C1,α(Ω̃)
Step 3. Now w = Dlu satisfies a divergence form, uniformly elliptic equation in Ω̃ with coefficients
in Cα(Ω̃). From Schauder theory we therefore get that w ∈ C1,α(Ω̃) so u ∈ C2,α(Ω̃).
Step 4. Now we can use Schauder theory for classical solutions and bootstrap to get smoothness.

Remark. The fact that C1 solutions to the minimal surface equation are smooth extends to
higher codimension, however it is no longer possible to prove it in the same way as outlined above
because the DeGiorgi-Nash-Moser part of the proof breaks down for elliptic systems. Instead we
can use Allard regularity to replace this step. This is of course very specific to the minimal surface
equation, whereas DeGiorgi-Nash-Moser theory in codimension one is very general.
In codimension 1, one case start with a Lipschitz or even BV solution, and still get full regularity.
In higher codimension this is no longer the case, as there are Lipschitz solutions to the minimal
surface equation that are not smooth.

We want to prove a special case of Allard’s regularity theorem, mentioned in the above remark
and which was stated in a certain form in a previous section. For the proof we will need the
following compactness theorem.

Theorem 3.2. Suppose that U ⊂ Rn+k is open, that Mi ⊂ U are stationary, n-dimensional
submanifolds with singMi ∩ U = ∅, pi ∈ Mi with pi → p ∈ U and |BMi

(pi)| → ∞ and such that
there exists Λ > 0 such that

Hn(Mi ∩Bn+k
ρ (x)

ωnρn
≤ Λ

for all x ∈Mi ∩ U and ρ ∈ (0, dist(x, ∂U)). Then there exist qi ∈Mi with qi → p such that λi :=
|BMi

(qi)| → ∞, and if we define M̃i := λi(Mi− qi) then (after passing to a subsequence) M̃i →M
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smoothly locally where M is smooth, stationary in Rn+k, |BM(x)| ≤ 1 for all x, |BM(0)| = 1 and

Hn(M ∩Bn+k
R (0))

ωnRn
≤ Λ,

for all R > 0.

Remark. M̃i → M smoothly locally means that for all p ∈ M and ρ > 0 such that there exists
a smooth function

u : (p+ TpM) ∩Bn+k
ρ (p)→ TpM

⊥

with M ∩Bn+k
ρ/2 (p) = (graphu)∩Bn+k

ρ/2 (p), (note that this is always possible at any p ∈M for some

ρ(p) > 0), we have that for sufficiently large i, there are smooth functions

uli : (p+ TpM) ∩Bn+k
ρ (p)→ TpM

⊥

for 1 ≤ l ≤ m such that

M̃i ∩Bn+k
ρ/2 (p) =

m⋃
l=1

graph(uli) ∩Bn+k
ρ/2 (p),

and uli → u in Cj-norm for all j on (p+ TpM) ∩Bn+k
ρ (p).

Example. If we take M to be the catenoid, which is parametrised by z = cosh−1(r) where
r =

√
x2 + y2, and Mi = µiM where µi ↘ 0 then we get smooth convergence with multiplicity 2

away from the origin, but not at/near the origin. This is no contradiction, as there is no bound
on the second fundamental form at the origin.

Proof. Choose ρi → 0 such that ρi|BMi
(pi)| → ∞ (e.g. ρi|BMi

(pi)|−1/2). Now let qi ∈ Mi ∩
Bn+k
ρi

(pi) be such that

|BMi
(qi)|dist(qi, ∂Bρi(pi)) ≥ |BMi

(x)dist(x, ∂Bρi(pi))

for all x ∈ Bρi(pi). Note that, provided i is large enough, we will have that Bρi(pi) ⊂⊂ U as
pi → p ∈ U and ρi → 0. Now let σi := dist(qi, ∂Bρi(pi)), then

|BMi
(qi)|σi ≥ |BMi

(x)|dist(x, ∂Bρi(pi))

≥ |BMi
(x)|dist(x, ∂Bσi(qi)),

for every x ∈Mi ∩Bn+k
σi

(qi). Therefore

λi = |BMi
(qi)| ≥ |BMi

(pi)|
ρi
σi
→∞.

In particular we have
λiσi = |BMi

(qi)| ≥ |BMi
(pi)|ρi →∞.

Let M̃i := λi(Mi − qi). Then M̃i is stationary in Bn+k
λiσi

(0) with λiσi →∞. Moreover 0 ∈ M̃i, and

for all x ∈ M̃i ∩Bn+k
λiσi

(0) we have

|BM̃i
(x)| = 1

λi

∣∣∣∣BMi

(
qi +

x

λi

)∣∣∣∣ ≤ 1

λi

λiσi

dist(qi + λ−1
i x, ∂Bσi(qi))

=
σi

σi − λ−1
i |x|

→ 1,
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if x is fixed. Moreover

Hn(M̃i ∩Bn+k
λiσi

(0))

ωn(λiσi)n
=
λniHn(Mi ∩Bσi(qi))

ωn(λiσi)n
=
Hn(Mi ∩Bσi(qi))

ωnσni
≤ Λ

so by monotonicity, for all R > 0 we have

Hn(M̃i ∩Bn+k
R (0))

ωnRn
≤
Hn(M̃i ∩Bn+k

λiσi
(0))

ωn(λiσi)n
≤ Λ.

In summary we have for all R > 0 and i large

(i) |BM̃i
(x)| ≤ 2 for all x ∈ M̃i ∩Bn+k

R (0),

(ii) (ωnR
n)−1Hn(M̃i ∩Bn+k

R (0)) ≤ Λ and M̃i is stationary in Bn+k
R (0).

Claim: From (i) and (ii) it follows that there exists a smooth staionard n-dimensional submanifold
MR ⊂ Bn+k

R (0) such that M̃i →M (up to subsequences) smoothly on compact sets in Bn+k
R (0).

The claim can be formulated as the following. Given Mn
i ⊂ U ⊂ Rn+k, where U is open; 0 ∈ U ;

each Mi is C2, stationary and embedded; singMi ∩ U = ∅ and

(i) supMi∩K |BMi
| ≤ CK for all i.

(ii) Hn(Mi ∩K) ≤ AK for all i.

Then there exists a smooth, stationary, (embedded in codimension 1) M ⊂ U such that, after
passing to a subsequence, we have Mi → M smoothly on compact sets. We now prove this
reformulated claim.
Fix K compact. By the uniform curvature bound (i), for every p ∈Mi ∩K we have

M̃i ∩Bn+k
ρ0/2

(p) ⊂ graphui ⊂ M̃i

where M̃i is the connected component of Mi containing p, and

ui : (p+ TpMi) ∩Bn+k
ρ0

(p)→ (TpMi)
⊥.

By (ii), only a bounded number of points {p1, . . . , pm} are needed to cover all of Mi ∩K by such
graphs. Passing to a subsequence we have pj + TpjMi → Tj as i → ∞ for each j. Write Mj as
the union of C2 graphs vij for j = 1, . . . ,m defined on balls of fixed size in Tj. These vij solve
the minimal surface equation, and hence we have uniform C2 on the vij, so by Arzelà-Ascoli we
get subsequential C1,α convergence to some limit vij → vj for each j. The vj are weak solutions
to the minimal surface equation, so the regularity theory implies they are in fact smooth. Let
M :=

⋃m
j=1 graphvj. One can then show that M is smooth, and in codimension 1 the maximum

principle implies that it must also be embedded.

With the above compactness theorem in hand, we now state the following special case of
Allard’s regularity theorem.
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Theorem 3.3 (A priori curvature estimates for smooth, stationary surfaces with appropriate
mass bounds). Let Mn ⊂ Bn+k

R (y) be stationary where y ∈M , with singM ∩Bn+k
R (y) = ∅ and M

smooth. There exist ε = ε(n, k) ∈ (0, 1), σ = σ(n, k) ∈ (0, 1) such that if

Hn(M ∩Bn+k
R (0))

ωnRn
≤ 1 + ε

then

sup
M∩Bn+kσR (y)

|BM | ≤
C

R

where C = C(n, k) independent of M .

Remark. (1) The theorem is true without the assumption that singM = ∅. Then part of the
conclusion is that there are no singularities in Bn+k

σR (y).

(2) It is not possible to relax the mass bound to

Hn(M ∩Bn+k
R (y))

ωnRn
< 2

as there are counter examples, consider a sequence of rescaled catenoids for example.

Proof. Without loss of generality we can assume y = 0 and R = 1. By the monotonicity formula,
for all z ∈M ∩Bn+k

1/2 (0) for all 0 < ρ < 1− |z|. Then

Hn(M ∩Bn+k
ρ (z))

ωnρn
≤
Hn(M ∩Bn+k

1−|z|(z))

ωn(1− |z|)n
≤ 1 + ε

(1− |z|)n

since Hn(M ∩Bn+k
1 (0)) ≤ 1 + ε. Thus

Hn(M ∩Bn+k
ρ (z))

ωnρn
≤ 1 + ε/2

for any z ∈ Bn+k
δ (0) ∩M and 0 < ρ < dist(z, ∂Bn+k

δ (0)), where δ = δ(ε) > 0 is small.
Suppose for contradiction that with σ = δ/2 we have Mi stationary in Bn+k

δ (0), 0 ∈Mi with

Hn(Mi ∩Bn+k
ρ (z))

ωnρn
≤ 1 + ε/2

for all z ∈ Bn+k
δ (0) ∩ Mi and 0 < ρ < dist(z, ∂Bn+k

δ (0)), and points pi ∈ Mi ∩ Bn+k
δ/2 (0) with

|BMi
(pi)| ≥ i. Applying the previous theorem we get a smooth, stationary, embedded (in any

codimension because of the mass bound), n-dimensional submanifold M of Rn+k with BM ≤ 1,
|BM(0)| = 1 and (ωnR

n)−1Hn(M ∩Bn+k
R (0)) ≤ 1 + ε/2 for all R > 0.

We claim that there is no M satisfying these conditions if ε is chosen to be small enough. Indeed,
if this were not the case then there exist M̃i such that |BM̃i

| ≤ 1, |BM̃i
(0)| = 1 and such that

Hn(M̃i ∩Bn+k
R (0))

ωnRn
≤ 1 + 1/2i,
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for all i and R > 0. Passing to a subsequence using the compactness theory again, we find
that there is some smooth, stationary M ′ ⊂ Rn+k, such that M̃i → M ′ smoothly, and moreover
|BM ′| ≤ 1, |BM ′(0)| = 1 and

Hn(M ′ ∩Bn+k
R (0))

ωnRn
≡ 1

for all R > 0. By the monotonicity formula, M ′ is a cone, hence since it is also smooth, it must
be a plane. This however contradicts the fact that |BM ′(0)| = 1.

3.1 Regularity of stationary surfaces

Suppose that M ⊂ U is stationary (where U ⊂ Rn+k is open, and dim(M) = n). Defining
singM := (M \M) ∩ U . We know that Hn(singM) = 0, but not much else...
We can make natural, stronger hypotheses than just stationarity. For example:
1. M is locally area minimising. Roughly, any compact piece of M has area less than or equal to
the area of any surface in U having the same boundary as the boundary of that piece. Under this
assumption we can say much more about the regularity:

Theorem 3.4 (DeGiorgi, Reifenberg, Federer-Fleming, Fleming, Almgren, J. Simons, Federer
[3,5,9–11,17,21]). In codimension 1, dimH(singM) ≤ n−7. In particular singM = ∅ if 1 ≤ n ≤ 6.

This theorem is sharp, for example the Simons cone

C

(
1√
2
S3 × 1√

2
S3

)
⊂ R8

is locally area minimising and has an isolated singularity. In higher codimension we can still
say more than in the stationary case, but more exotic singular structures can arise than in the
hypersurface case.

Theorem 3.5 (Almgren [4]). For any k ≥ 2, if M is locally area minimising then

dimH(singM) ≤ n− 2 (3.1)

This is also sharp as the algebraic curve

V = {z2 = w3} ∩ (C× C)

is locally area-minimising and has an isolated singularity at (0, 0).
2. M is stationary and stable, that is to say that for any X ∈ C1

c (U ;Rn+k) we have, defining
φt(x) := x+ tX(x), the following

d

dt

∣∣∣∣
t=0

Hn(φt(M)) =

∫
M

divMXdHn = 0

d2

d2t

∣∣∣∣
t=0

Hn(φt(M)) ≥ 0.
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If k ≥ 2, then no sharp dimension estimate for singM is known. This is ultimately because in
higher codimension it is not clear how to leverage the stability assumption. In codimension one
however, we can write the stability assumption as∫

M

|B|2ξ2dHn ≤
∫
M

|∇ξ|2dHn ∀ξ ∈ C1
c (M).

From the example of two crossing lines, it seems that dimH(singM) ≤ n− 1 is the best result we
could hope for. The following theorem says that in actual fact, if we rule out such singularities,
then we have the same regularity as in the area minimising case.

Theorem 3.6 (Wickramasekera [24]). Suppose that M is stationary, stable and codimension 1.
Assume that M has no ‘classical singularities’ (we say that a point y ∈ M ∩ U is a classical
singularity if there exists σ > 0 such that M ∩ Bn+1

σ (y) is a union of smooth n-dimensional
manifolds with boundary, meeting only along their common boundary). Then

dimH(singM) ≤ n− 7,

and hence, in particular, is empty if n ≤ 6.

Recall that Allard’s theorem says that if M is stationary in U = Bn+k
1 (0), with 0 ∈M and

Hn(M ∩Bn+k
1 (0))

ωn
≤ 1 + ε

where ε = ε(n, k) ∈ (0, 1), then

(1) singM ∩Bn+k
σ (0) = ∅, and

(2) supM∩Bn+kσ
|B| ≤ C.

For stationary, stable hypersurfaces we have a similar estimate.

Theorem 3.7. Given Λ > 0 there exists ε = ε(n,Λ) ∈ (0, 1) such that if M is stationary, stable
in U = Bn+1

1 (0),

Hn(M ∩Bn+1
1 (0))

ωn
≤ Λ, and

∫
M∩(B1/2×R)

|xn+1|2dHn ≤ ε,

then
sup

M∩(B1/4×R)

|B| ≤ C = C(n,Λ).

In fact, M ∩ (B1/4 × R) =
⋃l′

j=1 graph(uj) where uj : B1/4 → R are smooth, solve the minimal
surface equation and u1 < · · · < ul′ where l′ is bounded in terms of l.

An earlier version of this result was proved by Schoen-Simon [18], which assumed in place of
the ‘no classical singularities’ assumption, that Hn−2(singM) = 0.
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4 Mean Curvature Flow

We will consider only the flow of embedded hypersurfaces. In particular suppose that Mn is a
smooth manifold, and

F0 : M × [0, T )→ Rn+1,

is a smooth embedding. That is to say that each F0(·) is a homeomorphism onto its image, and
the differential has full rank at every point. We also will further assume that M0 := F0(M) is
closed (compact without boundary). A mean curvature flow starting at M0 = F0(M) is a smooth
one parameter family of embeddings

F : M × [0, T )→ Rn+1

which solves the initial value problem{
∂F
∂t

(p, t) = ~H(p, t)
F (p, 0) = F0(p)

where ~H is the mean curvature vector. We will write Ft(·) := F (·, t) and Mt := Ft(M). Much
like in the case of curve shortening flow, we have a short time existence theorem for closed initial
hypersurfaces.

Theorem 4.1 (Short-time existence). Given M compact, there exists a smooth solution F satis-
fying the above initial value problem for some T = T (M,F0) > 0.

One of the main tools in the analysis of mean curvature flows is the monotonicity formula of
Gerhard Huisken [14]. We will state it shortly, but first we introduce some notation. We write

Φ(x, t) :=
1

(−4πt)n/2
exp

(
|x|2

4t

)
t < 0, x ∈ Rn

or more generally, centred at a point (x0, t0)

Φ(x0,t0)(x, t) :=
1

(4π(t0 − t))n/2
exp

(
−|x− x0|2

4(t0 − t)

)
t < t0, x ∈ Rn.

Notice that ψ(x, t) := (−4πt)−1/2Φ(x, t) solves(
∂

∂t
+ ∆Rn+1

)
ψ = 0,

(in fact ψ is the backwards heat kernel).

Theorem 4.2 (Monotonicity formula [14]). Suppose that (Mt)t∈[0,T ) is a mean curvature flow of
compact embedded n-dimensional surfaces, then

d

dt

∫
Mt

Φ(x0,t0)(x, t)dHn(x) = −
∫
Mt

∣∣∣∣ ~H − (x0 − x)⊥

2(t0 − t)

∣∣∣∣2 Φ(x0,t0)(x, t)dHn(x)

for all 0 ≤ t < t0.
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Notice in particular that the right hand side is non-positive. This tells us that the integral
on the left hand side is monotone in t. Since the scale of the kernel Φ(x0,t0)(x, t) is shrinking as
t increases, ultimately becoming closer and closer to a point mass at x0 as t approaches t0, the
monotonicity formula gives us control over the rate at which mass can concentrate at a point
under the flow. It is the parabolic analogue for mean curvature flow of the monotonicity formula
for the mass ratios of minimal surfaces. We will see some applications soon, but first we introduce
what is like a ‘first variation’ for the flow.

Lemma 4.3. Let U ⊂ Rn+1 be open, then φ : U × [0, T )→ R, with φ(·, t) ∈ C2
c (U) and ∂φ

∂t
(·, t) ∈

C0
c (U) then

d

dt

∫
Mt

φ(x, t)dHn(x) =

∫
Mt

∂φ

∂t
(x, t) + ~H(x) ·Dφ(x, t)−H2(x)φ(x, t)dHn(x).

Proof. Fix t ∈ (0, T ), then

d

dt

∫
Mt

φ(x, t)dHn(x) =
d

ds

∣∣∣∣
s=0

∫
Mt+s

φ(x, t+ s)dHn(x)

=
d

ds

∣∣∣∣
s=0

∫
Mt

φ(gs(y), t+ s)Jgs(y)dHn(y),

by the area formula, where gs(y) = Ft+s ◦ F−1
t (y). Then for y ∈Mt we have

gs(y) = y + s
d

ds

∣∣∣∣
s=0

gs(y) +O(s2) = y + s ~H(y) +O(s2).

Moreover,

d

ds

∣∣∣∣
s=0

Jgs(y) = divMt
~H(y) = divMt(( ~H · ν)ν)

= ∇Mt( ~H · ν) · ν + ( ~H · ν)divMtν = −H2,

which follows because ~H = −(divMtν)ν, and hence we see that the main result follows also.

Corollary 4.4. If (Mt) is a compact mean curvature flow in U then

d

dt
Hn(Mt) = −

∫
Mt

| ~H|2dHn.

Proof. As M0 is compact, we can choose φ in such a way that φ ≡ 1 in a neighbourhood of Mt.

Corollary 4.5. If φ in the lemma satisfies(
d

dt
−∆Mt

)
φ ≤ 0

and if Mt is compact then
d

dt

∫
Mt

φdHn ≤ −
∫
Mt

| ~H|2φdHn
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Proof. By the chain rule we have(
d

dt
−∆Mt

)
φ(x, t) =

∂φ

∂t
+Dφ~H −∆Mtφ

which implies
∂φ

∂t
+Dφ · ~H ≤ ∆Mtφ,

and so
d

dt

∫
Mt

φ ≤ −
∫
Mt

| ~H|2φ+

∫
Mt

∆Mtφ = −
∫
Mt

| ~H|2φdHn,

by the divergence theorem.

Suppose that M0 ⊂ Bn+1
ρ (0) and take

φρ(x, t) :=

(
|x|2 + 2nt

ρ
− 1

)3

+

.

Then we can check by direct calculation that(
d

dt
−∆Mt

)
≤ 0.

Hence ∫
Mt

φρ(x, t)dHn ≤
∫
M0

φρ(x, 0)dHn.

Now M0 ⊂ Bn+1
ρ (0) implies that ∫

M0

φρ(x, 0)dHn = 0,

and so by the corollary we have ∫
Mt

φρ(x, t)dHn = 0

for all t ∈ (0, T ) which implies
Mt ⊂ Bn+1√

ρ2−2nt
(0).

Consequently we see that any compact mean curvature flow must become singular in finite time.
We now prove the monotonicity formula.

Proof of monotonicity formula. We assume without loss of generality that (x0, t0) = (0, 0). Then
by direct computation we have that

∂Φ

∂t
+ divMtDΦ +

|D⊥Φ|2

Φ
= 0.
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Hence we compute (
d

dt
+ ∆Mt

)
Φ =

∂Φ

∂t
+DΦ · ~H + divMt(DΦ− (DΦ · ν)ν)

=
−|D⊥Φ|2

φ
+DΦ · ~H + (D⊥Φ · ν)( ~H · ν)

=
−|D⊥Φ|2

φ
+ 2D⊥Φ · ~H

= −
∣∣∣∣ ~H − D⊥Φ

Φ

∣∣∣∣2 Φ + | ~H|2Φ.

Hence

d

dt

∫
Mt

ΦdHn =

∫
Mt

(
d

dt
+ ∆Mt

)
Φ− | ~H|2ΦdHn = −

∫
Mt

∣∣∣∣ ~H − D⊥Φ

Φ

∣∣∣∣2 ΦdHn

.

4.1 Local curvature estimates for smooth mean curvature flows

In this section we will discuss the local regularity theorem of Brian White, which serves as an
analogue of Allard’s theorem for mean curvature flows. To do so we first introduce some notation
that will prove convenient in what follows. The notation and terminology is based on White’s [23].
We denote spacetime as Rn+1,1 := Rn+1 × R. A general point in spacetime will be denoted
X = (x, t) ∈ Rn+1,1. We also introduce the parabolic norm

‖X‖ := max{|x|, |t|1/2}

and parabolic dilation for λ > 0

Dλ : Rn+1,1 → Rn+1,1 : (x, t) 7→ (λx, λ2t).

This is the natural scaling for parabolic problems, as rescaled solutions are themselves solutions.
Moreover, notice that the parabolic norm behaves nicely under this rescaling

‖Dλ(X)‖ = |λ|‖X‖.

Under the parabolic norm, open balls take the form

Bn+1,1
ρ ((x0, t0)) = Bn+1

ρ (x0)× (t0 − ρ2, t0 + ρ2).

We will denote the projection onto the time axis by τ : Rn+1,1 → R. Finally we will adopt
a slightly different view of mean curvature flows, identifying them with their spacetime track,
rather than considering them as an evolving hypersurface. More specifically we say that M is
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a smooth n-dimensional mean curvature flow in an open set U ⊂ Rn+1,1 if M ⊂ U and for all
X0 = (x0, t0) ∈M there exists ρ > 0 such that

M∩Bn+1,1
ρ (X0) =

{
(F (p, t), t)|p ∈M t ∈ (t0 − ρ2, t0 + ρ2)

}
for some n-dimensional smooth manifold M and a smooth map

F : M × (t0 − ρ2, t0 + ρ2)→ Rn+1

such that if Mt := Ft(M), then M t is a compact smooth embedded hypersurface with boundary
in Bn+1

ρ (x0) and ∂M t ⊂ ∂Bn+1
ρ (x0) and

∂F

∂t
(p, t) = ~H(F (p, t)),

where ~H is the mean curvature vector of Mt. We write M(t) := {x|(x, t) ∈ M}. The final
ingredient before we can state the local regularity theorem is a suitable norm.

Definition. Suppose that 0 ∈M. If M can be rotated to get M′ such that

M′ ∩Bn+1,1
1 (0) ⊂ graphu

where u : Bn,1, 1(0)→ R and ‖u‖C2,α(Bn,11 (0)) ≤ 1 then we say that K2,α(M, 0) ≤ 1. More generally,

if X ∈M we define

K2,α(M, X) := inf{λ > 0|K2,α(Dλ(M−X), 0) ≤ 1}

Notice that according to this definition we have

K2,α(DλM,DλX) = λ−1K2,α(M, X) ∀λ > 0.

Finally we let
K2,α;U(M) := sup

X∈U∩M
d(X,U)K2,alpha(M, X).

This is scale invariant, which is to say that

K2,α;DλU(DλM) = K2,α;U(M)

In the above definition we used the parabolic C2,α norm which is defined

‖u‖Ck,α(Ω) := Σj+2l≤k‖Dj∂ltu‖C0,α(Ω),

where

‖w‖C0,α(Ω) = sup
X∈Ω
|w|+ sup

X 6=Y

|w(X)− w(Y )|
‖X − Y ‖α

.

We can now state the local regularity theorem.
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Theorem 4.6 (White [23]). There exists ε(n) > 0 such that the following holds. Let M be a
smooth n-dimensional proper mean curvature flow in some open U ⊂ Rn+1,1. By proper we mean
that M =M∩ U . Moreover suppose that for all X = (x, t) ∈ U and for all r ∈ (0, d(X,U)) we
have

Θ(M, X, r) :=

∫
M(t−r2)

1

(4πr2)n/2
exp

(
−|y − x|

2

4r2

)
dHn(y) < 1 + ε,

where d(X,U) = inf{‖X − Y ‖|Y ∈ Rn+1,1 \ U}.

K2,α;U(M) ≤ C = C(n, α)

Our next goal is to prove the theorem, for which we will employ a contradiction argument
and use compactness. For this we will need the following appropriate form of the Arzelà-Ascoli
theorem.

Theorem 4.7. If Mi are n-dimensional smooth mean curvature flows in U ⊂ Rn+1,1 open, such
that for every U ′ ⊂⊂ U we have

sup
U ′

K2,α(Mi, X) ≤ C(U ′) ∀i,

Assume without loss of generality that 0 ∈Mi for all i. Then there exists a smooth mean curvature
flow M in U with 0 ∈M such that (up to subsequences) we have

Mi →M

locally in C2.

Proof of Theorem 4.6. Suppose that the statement fails, then for all i = 1, 2, . . . there are Ui ⊂
Rn+1,1 open and Mi ⊂ Ui proper smooth mean curvature flows with

Θ(Mi, X,R) < 1 +
1

i

for all X ∈Mi, and 0 < r < d(X,Ui), but with

K2,α;Ui(Mi)→∞. (4.1)

By compactly exhausting the Ui if necessary we can assume without loss of generality that

K2,α;Ui(Mi) =: si <∞

and that si →∞. Pick Xi ∈M〉 such that

d(Xi, Ui)K2,α(Mi, Xi) ≥
si
2
.

Translate Xi to the origin and dilate so that we have K2,α(Mi, 0) = 1. It therefore follows from
(4.1) that

d(0, Ui)→∞ ∀X ∈Mi.
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We observe

K2,α(Mi, X)d(X,Ui) ≤ si ≤ 2d(0, Ui)

⇒ K2,α(Mi, X) ≤ 2d(0, Ui)

d(X,Ui)
≤ 2d(0, Ui)

d(0, Ui)− ‖X‖

which implies that for suitably large i we have uniform local bounds on K2,α(Mi, X). Therefore
by Theorem 4.7 we deduce that there exists a smooth, proper mean curvature flow M in Rn+1,1

such that
Mi →M

locally (parabolically) in C2. Moreover we have that Θ(M, X, r) ≤ 1 for all X ∈ M and for all
0 < r < ∞. Now from the monotonicity formula for M we see that in fact Θ(M, X, r) ≡ 1 for
all r > 0 because M is smooth. And so (from the monotonicity formula again∫

M(t−r2)

∣∣∣∣ ~H − (x− y)⊥

2r2

∣∣∣∣2 Φ(x,t)dHn(y) = 0.

Hence the translated flow M′ =M−X satisfies

~HM′(t′)(y
′) =

y′⊥

2t′
t′ < 0

which implies that M′ is a self-shrinker, that is, evolves by the relation M′(t′) =
√
−t′M′(−1).

Since M is smooth at time zero, the curvature can’t blow up and so M(−1) is a plane.
After maybe rotating we can assume that M = (Rn × {0}) × R. Since Mi →M in C2 locally,
there exist Ri →∞ such that

Mi ∩Bn
Ri

(0)× [−Ri, Ri] = graphui

where ui : Bn
Ri

(0) × [−Ri, Ri] → R, with ‖ui‖C2 → 0. We will get a contradiction if we show
that in fact, ui converge to 0 in C2,α. To do so, we first note that each of the ui satisfies the
non-parametric mean curvature flow equation

∂ui
∂t
−∆ui = −DjuiDlui

1 + |Du|2
Djlui =: fi.

By the interior parabolic Schauder estimates we have

‖ui‖2,α;BR ≤ C‖fi‖0,α;B2R
,

and since fi is quadratic in terms bounded in C0,α and converging to zero uniformly we get

‖ui‖2,α → 0 as i→∞

contradicting the fact that K2,α(Mi, 0) ≡ 1.
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We so far only stated the monotonicity formula for compact flows, but it is possible to extend
this to non-compact flows also provided that∫

M(t)

Φ(x0,t0)(x, t)dHn <∞ ∀t.

Indeed, suppose without loss of generality that (x0, t0) = (0, 0) and we write

Φ(x0,t0)(x, t) = Φ(x, t) =
1

(4π(−t))n/2
exp

(
|x|2

4t

)
t < 0.

Then (
d

dt
+ ∆M(t)

)
Φ− | ~H|2Φ = −

∣∣∣∣ ~H − D⊥Φ

Φ

∣∣∣∣2 Phi.
For R > 0 we introduce the cut-off function φR ∈ C2

c (Rn+1) which satisfies

φR ≡ 1 on BR φR ≡ 0 on Rn+1 \B2R |DφR| ≤
C

R
|D2φR| ≤

C

R2

Then we can calculate

d

dt

∫
M(t)

ΦφRdHn =

∫
M(t)

∂

∂
(ΦφR) + ~H ·D (ΦφR)− | ~H|2ΦφRdHn

=

∫
M(t)

d

dt
(ΦφR)− | ~H|2ΦφR

=

∫
M(t)

Φ
dφR
dt

+ φR
dΦ

dt
− | ~H|2ΦφRdHn

=

∫
M(t)

Φ

(
d

dt
−∆M(t)

)
φR +

((
d

dt
+ ∆M(t)

)
Φ− | ~H|2Φ

)
φRdHn,

since ∫
M(t)

Φ∆M(t)φR =

∫
M(t)

φR∆M(t)Φ.

Hence

d

dt

∫
M(t)

ΦφRdHn = −
∫
M(t)

Φ
(
∆M(t)φR

)
dHn

︸ ︷︷ ︸
≤ C
R2

−intM(t)

∣∣∣∣ ~H − D⊥Φ

Φ

∣∣∣∣2 ΦφRdHn

so we can let R→∞ and we will recover the same identity as before.

4.2 Proof of Gage-Hamilton-Grayson Theorem

Now that we have more results for mean curvature flow, and hence curve shortening flow in
particular, under our belts, we return to the proof of the Gage-Hamilton-Grayson result which
we started discussing back in section 1.1. The proof we sketch is based on Huisken’s proof of the
result which first appeared in [15].
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Sketch of proof. Suppose that F : S1×[0, T )→ R2 is smooth with F (·, t) : S1 → R2 an embedding
for all t, and such that

∂F

∂t
(p, t) = ~k(p, t),

and that F (x, 0) = F0(x) for some fixed embedding F0. We denoteM :=
⋃
t∈[0,T ) γt×{t}. Suppose

that T is the first singular time of the flow, so that M is a proper smooth flow in R2 × (0, T ).
Furthermore, that T is the first singular time means there is x0 ∈ R2 with the following properties:

(i) (x0, T ) is reached by the flow, i.e. there are xj, tj such that tj < T with tj ↗ T and
xj ∈M(tj),

(ii) there is no spacetime neighbourhood U0 of (x0, T ) such that M∩ U0 can be extended to a
proper smooth flow in U0.

By the comparison principle and considering shrinking circles, T <∞. RescaleM around (x0, T )
by λj →∞. Then

Mj := Dλj(M− (x0, T ))

=
⋃

λj(γt − x0)× λ2
j{t− T},

so
Mj(s) =

⋃
λj(γT+λ−2

j s − x0)× {s} s ∈ [−λ2
jT, 0).

Monotonicity for M says

d

dt

∫
M(t)

Φ(x0,T )(x, t)dHn = −
∫
M(t)

∣∣∣∣~k − (x0 − x)⊥

2(T − t0)

∣∣∣∣2 Φ(x0,t0)dHn t < T.

Let

Θ(M, (x0, T )) := lim
t↗T

∫
M(t)

Φ(x0,T )(x, t)dHn,

which must exist by the monotonicity formula. Therefore integrating we have∫
M(t)

Φ(x0,T )(x, t)dHn −Θ(M, (x0, T )) =

∫ T

t

∫
M(t′)

∣∣∣∣~k − (x0 − x)⊥

2(T − t′)

∣∣∣∣2 Φ(x0,T )(x, t
′)dHndt′.

In terms of the rescaled flow,∫
Mj(s)

Φ(0,0)(y, s)dHn(y)−Θ(M, (x0, T )) =

∫ 0

s

∫
Mj(s′)

∣∣∣∣~kj − y⊥

2s′

∣∣∣∣2 Φ(y, s′)dHn

︸ ︷︷ ︸
=:fj(s′)

ds′.

Since ∫
M(T+λ−2

j s)

Φ(x0,T )(x, T + λ−2
j s)dHn → Θ(M, (x0, T ))
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as j →∞, it follows that fj → 0 in L1
loc(−∞, 0] this implies (up to subsequences) that f j(s)→ 0

pointwise almost everywhere. Hence for almost every fixed s we have∫
Mj(s)∩BR(0)

|~kj|2dHn ≤ C

with C independent of j. Since we are in one dimension, this implies that theMj(s) are bounded

in C
1,1/2
loc . Hence we get subsequential convergence in Mj(s) → M̃(s) in C1,α

loc for any α < 1/2,
where M̃(s) is an embedded (by Huisken’s scale invariant intrinsic/extrinsic distance estimate
discussing in section 1.1) C1,1/2 curve.. Wince we have uniform W 2,2

loc bounds, Rellich’s theorem
(see [7]) implies the limit is in W 2,2

loc . Elliptic regularity then gives smoothness as M̃(s) satisfies

~k =
y⊥

2s

in a weak sense. It follows from work of Abresch-Langer [1] that M̃(s) must be either a line
through the origin or a circle of radius

√
−2s centred at the origin. If M̃(s) is a line then we see

that Θ(M, (x0, T )) = 1 and so by Theorem 4.6 it follows that (x0, T ) is a smooth point, which is
a contradiction. On the other hand, if M̃(s) is a circle then we can show C1,α convergence of the
rescalings to S1(

√
−2s) which implies smooth convergence for all times. This then implies the

result.
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