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Abstract

The goal of this thesis is to examine two variational problems in geometry arising
from the study of the area functional. The first half is dedicated to studying the
boundary regularity of critical points of the area functional, while the second half
focusses on short time existence of smooth solutions to the L? gradient descent
of the same functional.

We first study regularity of stationary integral n-varifolds that are L2-close to
a pair of planes intersecting along an (n— 1)-dimensional subspace. We show that
provided such a varifold V satisfies suitable mass bounds, the aforementioned L2
distance is sufficiently small, and V' satisfies certain structural assumptions on
the singular set; then V consists of four smooth sheets meeting along a O
curve. This immediately implies a corresponding boundary regularity result for
subspace boundaries by Allard’s reflection principle.

We also study short time existence of Lagrangian mean curvature flow from
a non-smooth initial condition. In particular we show that for any compact
Lagrangian L C C" with a finite number of singularities, each asymptotic to a
pair of non area minimising, transversally intersecting Lagrangian planes, there
is a smooth Lagrangian mean curvature flow existing for some positive time, that
attains L as t \, 0 as varifolds, and smoothly locally away from the singularities.

We aim to give a thorough account of each problem, while highlighting areas
of overlap in the approaches that point to wider applicability of these methods

to problems in geometric analysis and variational geometry in general.
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Chapter 1
Introduction

In this thesis we study two problems in geometric analysis that share a common
starting point; the area functional. While the problems themselves are quite dif-
ferent, one being elliptic, the other parabolic, they have many things in common,
and often techniques that prove fruitful in the study of one problem turn out to

have analogues in the other.

1.1 Geometric background

We begin by introducing the area functional. Consider an open set U C R"** and
a closed (that is, compact and without boundary) C* manifold M C U. The area
functional is simply the n-dimensional Hausdorff measure of M, denoted H"(M)
(see [51]). We will assume in this section that H"(M) < co. A natural question
is to investigate how the area changes when we deform M. Suppose that we have
a compactly supported, continuously differentiable vector field X € CH(U; R"**).

Given such an X, we define the one parameter family of maps
0 U =R 1o +tX(2),

which are bijective onto U if |¢| is sufficiently small. Thus, for € > 0 small enough,
the family M, := ¢, (M) for t € (—¢,¢) consists of C! closed submanifolds of U
with finite H"-measure. To see how the area of M, changes as t varies, we can
compute the derivative of H™(M;) at t = 0 explicitly in terms of X as follows (see
[51] for details).
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Lemma 1.1.1 (First variation formula). Suppose that M is a closed C' sub-
manifold of some open set U C R"™* with finite H"-measure and that X €
CHU;R™ ), then with M, defined as before we have

d
S| = / diva XdH", (1.1.1)
dt =0 M
where divyy is the tangential divergence defined as divy X (z) == >0, - D, X (x),
for T, ..., 1, any orthonormal basis for T,M and D, the directional derivative

in the direction ;.

Remark 1.1.2. Notice that the fact that H"(M,) is finite for each M; means
this derivative is well-defined, with differentiability following from the fact that
X is C'. It is possible to still make sense of the above for M non-compact if we

assume that M has locally finite H™-measure.

If M is at least C?, then one can show that for any vector field X, we have

the pointwise identity
divyy X+ (2) = =X+ (2) - H(z) = =X (2) - H(x), (1.1.2)

where H () is the mean curvature vector at 2 and (-) denotes the projection to
(T,M)*+. Moreover by the divergence theorem, since we have that OM NU = 0,
it follows

/M diva X7 (z)dH" = 0,

where (-)T denotes the projection to T, M. Hence we conclude, by combining

Lemma 1.1.1, equation (1.1.2) and the divergence theorem that

d n
)

:/ divy XdH" = —/ X - Hdx". (1.1.3)
=0 M M

Given (1.1.3) we can consider both critical points and gradient flows for the area
functional. Indeed we see that if H = 0 on M , then M is a critical point for
area in the space of n-dimensional submanifolds of U. This observation forms the
basis of the definition of a minimal surface, which we will introduce in more detail
in Section 1.2. On the other hand, from the same formula we see that the most

efficient way to reduce area would be to allow each point to move with velocity
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equal to the mean curvature vector. We call such a motion a mean curvature

flow, and give a more detailed overview in section 1.3.

1.2 Minimal surfaces

As observed in Section 1.1, the first variation formula (1.1.3) implies that a C?
submanifold, M C R"** with H=0is necessarily a critical point for the area

functional.

Definition 1.2.1. We say that a C? submanifold M C R"* with H =0 is

minimal, or ¢ minimal surface.

The study of minimal surfaces dates back to the beginnings of the calculus of
variations and the work of Euler and Lagrange. A typical problem is the following:
given an (n — 1)-dimensional boundary in R"**  find the n-dimensional surface
of least area with that boundary. In the case n = 2, k = 1, this is known as
Plateau’s problem, named for Joseph Plateau, who experimented with soap films
spanning wire frames in the late 19th century, and derived laws governing their
structure and regularity [47]. The first general solutions to Plateau’s problem
were constructed simultaneously by Jesse Douglas [14] and Tibor Radé [48], for
which the former won the Fields medal.

Of course to answer such questions one must first decide what we even mean
by ‘surface’, and indeed what sort of assumptions we wish to make on the regu-
larity of the boundary. Early investigations of Plateau’s problem, including the
work of Douglas and Radé, generally defined surfaces to be mappings of a disk.
While this approach has its advantages, there are also some serious limitations. In
particular, viewing a surface as a mapping of a disk places an a priori restriction
both on the types of singularities that can arise, as well as the topological com-
plexity. Another problem is that such a class lacks good compactness properties
when endowed with any natural topology. Such properties are desirable when ad-
dressing questions of existence, or when conducting a blow-up analysis. For these
reasons it is desirable to work in a larger class that generalises C!' submanifolds
with locally finite H"-measure.

There are multiple possible choices for such a generalised class, but any class
we choose should have a few basic properties. Firstly, one needs a notion of area

that extends that of H™-measure restricted to the surface; secondly, it should
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be possible to extend the variational notion of minimality given in (1.1.1); and
finally it would be desirable if area were continuous with respect to the topology

of this space, or at least continuous on the subset of critical points.

A natural notion of surface is that of a countably n-rectifiable set, which we
will define rigorously in Chapter 2. Informally speaking, a countably n-rectifiable
set can be thought of as a H"-measurable set M with locally finite H"-measure
that, away from a set of H™-measure zero, is a countable union of embedded C! n-
dimensional submanifolds. An important equivalent definition is that M possesses
a well-defined measure-theoretic notion of tangent plane at almost every point.
Given this it is possible to define notions of tangential derivatives and hence one

can give meaning to the right hand side of (1.1.1) for M merely n-rectifiable.

Though this class is promising, it doesn’t possess all the properties we require.
Indeed one needs to expand the class further to the space of integer multiplicity
rectifiable n-varifolds, hereafter referred to simply as rectifiable n-varifolds or
varifolds (see Chapter 2). This space was originally introduced by Almgren in
[3], before later being streamlined by Allard in [1], see also Simon [51]. It consists
of pairs of countably n-rectifiable sets M and functions #: M — N, called the
‘multiplicity’. The area, or indeed ‘mass’, is defined to be H"L#; that is ‘sheets’
of M are counted with multiplicity. Allowing this is crucial if we hope to have
continuity of area, as evidenced by the example of a sequence of two planes
coming together in the limit. Notice in particular that any C! submanifold with
locally finite ‘H™-measure can clearly be viewed as a rectifiable n-varifold with

unit multiplicity everywhere.

The space of rectifiable n-varifolds has been successfully used to answer deep
geometric questions, for example the existence of minimal surfaces of specific
dimension in an arbitrary compact Riemannian manifold, which was established
through work of Almgren [3], Pitts [46] and Schoen-Simon [50].

One can draw an analogy between using the class of rectifiable n-varifolds
to study problems in geometry, and using Sobolev spaces to study partial dif-
ferential equations; in both cases one has to sacrifice a priori regularity to gain
compactness. Thus while questions of existence generally become easier, the real
challenge is in the regularity theory. We hope that a member of this class that
solves some partial differential equation or minimisation problem, will be much

more regular than a typical member of the class.
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1.2.1 Interior regularity of stationary varifolds

We defer a detailed discussion of the technicalities to Chapter 2, but we remark
that it is possible to derive an analogue of (1.1.1) for integral varifolds. In par-
ticular we can deform a varifold along a vector field and compute the derivative
of the area. Critical points for area are precisely those varifolds for which this

derivative is zero for any valid choice of vector field.

Definition 1.2.2. We call a varifold V' that is critical for area in the aforemen-

tioned variational sense stationary.

Since we want to investigate the regularity of stationary varifolds, we make

the following definition.

Definition 1.2.3. Given a varifold V', we define the regular set of V', denoted
regV’, to be the set of all points x € V' such that there is an open neighbourhood
of x in which V is a smooth n-dimensional submanifold. We define the singular
set, denoted singV', to be the set of all points x € V such that v & regV.

Remark 1.2.4. It is a slight abuse of notation to say x € V', but we do so in
order to not get mired in the technicalities of the definition of a varifold here.

The above definition is made more precise in Chapter 2.

There is little known in general about the regularity of stationary varifolds.
For example, it is in fact still an open question whether H"(singV’) = 0 for n > 2.
One of the few known results is due to Allard [1], who in his seminal paper was

able to prove the following

Theorem 1.2.5 (Allard). The regular set of any stationary varifold is open and

dense.

In fact Allard was able to prove much more than this, but a precise state-
ment requires the introduction of much additional terminology, which we defer
to Chapter 2. Instead we simply remark that the stationarity assumption itself
can be relaxed to assuming that the mean curvature (or rather a generalisation
thereof) is in L for some p > n.

Under additional assumptions on the varifold, considerably more is known.
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- If K =1 and V is area minimising, then through combined work of DeGiorgi
[12], Federer-Fleming [20], Simons [54], and Federer [19] it has been shown
that the singular set is codimension 7, i.e. dimysingV < n — 7. Here, to
make sense of what it means to be area minimising, V' must correspond to
an area minimising rectifiable current. This is an alternative generalisation
of C'* submanifolds, which we do not define here, that comes equipped with
a notion of orientation and boundary. Area minimising means that any
compact piece of the surface does not have greater area than any competitor

piece with the same boundary.

- If £ > 2 and V is area minimising, then work of Almgren [4] shows that
dimysinglV < n — 2. In this case and also the codimension 1 case, there are

well known examples to show that the dimension bounds are sharp.

- If k = 1 and V is stationary; stable, which is to say that the second variation
is non-negative; and V' has no ‘classical singularities’, i.e. no singularities for
which one can find a neighbourhood in which V' consists of 3 or more C1*
sheets meeting along a common boundary; then work of Wickramasekera
[64] implies dimysingV < n — 7. This fully generalises the & = 1 area
minimising case, since area minimising V' are necessarily stationary, stable,

and do not have classical singularities.

1.2.2 Boundary regularity of stationary varifolds

The above results are all statements about the interior. When it comes to bound-
ary regularity, much less is known. Allard [2] proved a boundary analogue of his

interior regularity result, Theorem 1.2.5, which implies the following.

Theorem 1.2.6. Let B be a C™' curve in B1(0) with 0 € B. Suppose that V' is
a stationary varifold in By(0)\ B which is asymptotic to a half plane H at 0 with
OH = TyB, in the sense that there is a sequence of rescalings of V' that converges
to H. Then in a neighbourhood U of 0, V' consists of a smooth manifold M with
oOMNU=BNU.

Remark 1.2.7. As before, we note that it is possible to make a much more precise

statement, but we defer this to Section 3.1.
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The requirement that B is C*! has been relazed to C* for any a € (0,1) by
Bourni [7]. Furthermore, as is the case for Theorem 1.2.5, the requirement that
V' is stationary can instead be relazed to the generalised mean curvature being in

L? forp >n.

Unlike the interior case, there has not been much more than this proved even

under additional assumptions. One of the few examples is the following.

- If k =1 and V corresponds to an area minimising rectifiable current 7" and
OT is connected, oriented and embedded, then Hardt-Simon [26] showed in
a neighbourhood of 9T, T is a C1® connected, embedded submanifold.

One of the main difficulties lies in the fact that the varifold is only assumed
stationary in the complement of the boundary curve. Consequently, the estimates
that prove so successful in proving interior regularity theorems do not in general
hold at the boundary.

Despite the difficulties, in light of Theorem 1.2.6 it is natural to ask the
following question: “if at a boundary point, a stationary varifold V' is asymptotic
to a pair of half-planes meeting along a common boundary, what can we say about
the regularity of V' in a neighbourhood of that point?”. In particular we want
to understand if Allard’s ideas in the proof of Theorem 1.2.6 could be adapted
to the case of two half-planes, and if we can obtain the analogous conclusion,
namely that in a small neighbourhood of the point on the boundary the varifold
consists of two smooth manifolds meeting along the boundary.

One of the key tools in Allard’s proof was the following reflection principle.

Lemma 1.2.8 (Reflection Principle). Let P be an (n — 1)-dimensional subspace
passing through the origin, and let p and p, denote the orthogonal projections
to P and P respectively. If V is stationary in By(0) \ P, then V :=V +V is
stationary in B1(0), where V is the reflection of V, i.e. the ‘image’ of V under
the map V: x — p(z) — pL(z).

In the case of a subspace boundary, the reflection principle effectively trans-
forms boundary points into interior points, as the reflected varifold is stationary
across the boundary. Allard was able to use this observation successfully to allow
him to use his interior regularity theorem in addressing the boundary regularity

question. If we wish to do the same thing in the case of a varifold asymptotic to
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two half-planes, we need a corresponding interior theorem. In particular we need
to show that a varifold close in mass and in L? to a pair of planes intersecting
along an (n — 1)-dimensional subspace, consists in the interior of four smooth
submanifolds meeting along a common boundary.

Unfortunately, as was remarked already, assuming only stationarity, not much
is known beyond Allard’s interior theorem (Theorem 1.2.5). Even worse, the the-
orem we need, as stated above, is false, and there are simple counter examples
(see Section 3.1). Instead we must make more restrictive assumptions. Natural
additional assumptions, for example that the surface be stable, or area minimis-
ing, do not seem to behave well with the reflection principle, so it is unclear how
to proceed in this case. Instead we make an a priori assumption about the struc-
ture of the singular set, and show that under these assumptions, we can prove

the aforementioned interior theorem, which we may state informally as follows.

Theorem 1.2.9 (Main regularity theorem). If V' is a varifold, which is stationary
in B1(0) and is sufficiently close in mass and in L* to a pair of planes intersecting
along an (n—1)-dimensional subspace, and if the singular set of V' satisfies certain
structural assumptions, then in a neighbourhood U of the origin, V consists of

four smooth submanifolds with a common CY* boundary in U.

Using the reflection principle we can immediately deduce a corresponding
boundary regularity result, in the case that the boundary is an (n—1)-dimensional
subspace. Whether or not the interior regularity theorem can be used to prove
corresponding boundary regularity results for more general boundaries remains
open.

In Chapter 2 we introduce in detail the concept of stationary varifolds, and
state related results and definitions. Chapter 3 is dedicated to proving the above
regularity theorem and corollary. We will also give a more detailed and technical

motivation of the problem in Section 3.1.

1.3 Mean curvature flow

Returning to (1.1.3), we see that the most efficient way to decrease area would
be to choose the vector field X to coincide with the mean curvature vector of M
at each point. This motivates the definition of mean curvature flow, which is the

gradient descent for the area.
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Definition 1.3.1. A one parameter family of evolving surfaces M, is a mean
curvature flow if the normal velocity at each point is equal to the mean curvature

vector.

Remark 1.3.2. Strictly speaking this is not a gradient descent in the classical
sense, as there is no fivred L? structure, indeed the surface measure evolves with
the moving hypersurfaces. It does however behave much like one would expect a

classical gradient descent to behave.

The mean curvature flow first appeared in the work of material scientists
studying annealing metals, bubble growth, and other physical phenomena where
systems evolve so as to minimise their surface area. In particular Mullins [43],
in his investigation of moving grain boundaries, may have been the first to
write down the mean curvature flow equation, and also was able to find certain
self-similar solutions. Brakke [8] later independently defined a general measure-
theoretic notion of the flow, see Section 4.4 for more details on his construction.

In both cases the mean curvature flow can be shown to be equivalent to
a quasilinear second order parabolic partial differential equation being satisfied
on the surface. Solutions of the mean curvature flow exhibit many properties
that one would expect of solutions to such an equation; for example, short time
existence and uniqueness for a fairly general class of initial conditions.

In some cases, the behaviour of solutions is well understood. In his seminal
paper, Huisken [28] considered a classical parametric formulation of the mean
curvature flow akin to that of Mullins, and showed that closed convex hypersur-
faces of dimension n > 2 contract to a ‘round point’. That is to say that if the
evolution is rescaled so as to keep enclosed volume constant, then the rescaled
hypersurfaces converge to a round sphere. In the one-dimensional case, combined
work of Gage-Hamilton [21] and Grayson [23] showed that any embedded closed
curve in the plane shrinks to a round point under mean curvature flow (also called
curve shortening flow in this case).

Huisken’s result is no longer true if one drops the assumption of convexity.
Indeed the standard example is that of a ‘dumbbell’; two large spheres joined
together by a narrow cylinder. The spheres being large, have small curvature,
and so only contract inwards slightly in a short period of time. The cylinder on the
other hand, being very narrow, will contract inwards much more quickly, pinching

off at a point. Thus it is certainly possible for flows to develop singularities
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without vanishing completely.

In general, the evolution of a closed submanifold of Euclidean space will de-
velop a singularity in finite time. Moreover one can easily check that if a singular-
ity develops at a time 7" € (0, 00), then the curvature must become unbounded as
t /7T, so it is not possible to extend the flow classically. We want to understand
the behaviour of the solution as we approach the singular time, in the hope that
it might nevertheless be possible to continue the flow in a controlled way.

There are different ways we might try to extend the flow. One possibility is
to adopt a weaker notion of solution that allows for the presence of singularities.
Various weak formulations of the mean curvature flow have been introduced, the
earliest being the aforementioned measure theoretic solutions of Brakke [8], with
later refinements due to Ilmanen [32]. Chen-Giga-Goto [11] and Evans-Spruck [17]
also introduced a level set formulation, based on the theory of viscosity solutions
of partial differential equations.

An alternative approach, inspired by work of Hamilton and Perelman on the
Ricci flow, is to perform surgery on the surfaces. Here one cuts out regions of high
curvature before a singularity can develop, and replaces them with something
more regular. One can then continue flowing, and study the evolution of the
resulting pieces. This approach has the advantage of being able to keep track
of changes in topology, and apart from the surgery times themselves, the flows
remain smooth. There are drawbacks however, for example there is no canonical
way to perform a surgery, so instead a choice has to be made resulting in non-
uniqueness. Moreover the flow with surgeries is not really a solution to the original
problem. Though it can be used to deduce interesting facts about geometry or
topology, from the perspective of analysing the underlying partial differential
equations it is less interesting. Surgery procedures have been successfully carried
out for mean curvature flow of hypersurfaces M in R"*! by Huisken-Sinestrari
[30] for n > 3 if M is assumed 2-convex, i.e. that the sum of the smallest two
principle curvatures is everywhere non-negative; and by Brendle-Huisken [9] if
n = 2 and M is assumed mean convex, i.e. that the (scalar) mean curvature is
everywhere non-negative. Notice in particular that in the n = 2 case, the notions
of mean convexity and 2-convexity coincide.

One final possibility for extending a flow is to take a weak limit of the flow
at the first singular time, and then try to prove short time existence of a smooth

solution that attains the singular limit as its initial condition in some suitable
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sense. This is the approach we take in Chapter 5. In particular, we are motivated
by a problem from complex geometry, which can be rephrased as a question of
the existence of minimal surfaces in certain homology classes. The use of mean
curvature flow has been suggested as a potential means of solving this problem,
but singularities can be shown to develop for generic initial conditions, in the
sense that given any initial condition, one can find another initial condition in
the same class that develops a finite time singularity. Consequently, if the mean
curvature flow is to be used to construct a minimal surface in this class, one needs
to be able to continue the flow past singularities. We will show that for certain
types of singularities that develop under the flow, it is possible to continue the
flow past the singularity, with every time slice consisting of smooth submanifolds
except at the singular time.

Chapter 4 contains the definition of mean curvature flow along with some basic
results. In Chapter 5 we prove short time existence of smooth flows originating

from certain kinds of singular initial condition.

1.4 Notation

We collect here some of the basic notation used throughout the thesis. Notation

specific to later chapters will be defined as needed.

- n and k will denote positive integers. We work in R"** n will usually be
reserved for the dimension of the object of study, while k£ will denote the

codimension.

- Given z € R™™ and p > 0 we denote by B,(z) the open ball of radius p
centred at z, that is B,(z) = {y € R"™ | |z — y| < p}. In the case x = 0
we typically abbreviate this to B,.

- Given x € R™, we denote by B)'(z) the m-dimensional ball of radius p

centred at zx.

- For s > 0 we denote by H* the s-dimensional Hausdorff measure on R"**,
For m € NU {0} we let w,, be the volume of the m-dimensional unit ball,
i.e. w, = H™(B0)). Here we interpret B(0) as a subset of R"™* by
identifying with BJ"(0) x {0}"+*=m,
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- For A, B C R""* we denote by disty(A, B) the Hausdorff distance between
A and B.

- For A C R™* we denote by dimy A the Hausdorff dimension of A, which is
defined as the infimum over all s > 0 for which H*(A) = 0.

- Given a measure j on R""* and a p-measurable subset A C R"** we denote

by pLA the restriction of p to A, i.e. the measure defined by
uLA(B) := p(AN B), B C R™™ ji-measureable.
Given a p-measurable function f: R"™* — [0, 00), we define
pLf(B) = /B fdu, B C R™™ p-measureable.

In particular, we have uL A = pucl 4.
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Chapter 2
Geometric measure theory

In this chapter we introduce concepts from geometric measure theory that will
be required later. Of particular interest to us are so-called stationary varifolds,
informally introduced in Section 1.2, which are a measure-theoretic notion of
minimal surface that allow for the presence of singularities. Much of the material
in this chapter is well known, and unless otherwise specified a good reference is
[51].

2.1 Rectifiable sets and rectifiable varifolds

The generalised notion of submanifold we use is that of an integer multiplicity
n-rectifiable varifold. As stated in Section 1.2 these can be thought of as ‘surfaces
with multiplicity’, where ‘surface’ is interpreted as a countably n-rectifiable set.
We begin by giving the formal definition of a countably n-rectifiable set, as well

as some basic results concerning their structure.

2.1.1 Countably n-rectifiable sets

Definition 2.1.1 (Countably n-rectifiable set). We say that a set M C R"** js
countably n-rectifiable if

M c MyU | Fj(R™)
j=1

where My C R™* satisfies H"(My) = 0, and each F;: R™ — R™™ is Lipschitz.

Remark 2.1.2. By the extension theorem for Lipschitz functions, we have that
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M is countably n-rectifiable if and only if

3 = 1,0 F(4))

j=1
where H"(My) = 0 and Fj: A; — R™™* is Lipschitz with A; C R™ for each j.

The following important characterisation of countably n-rectifiable sets is
sometimes even taken as the definition. It serves as an informal justification
for why we might expect countably n-rectifiable sets to be good models for the

limits of sequences of C'* submanifolds.

Theorem 2.1.3. A subset M C R"™ is countably n-rectifiable if and only if

M c NoU | Ny,
j=1
where Ny C R"* satisfies H"(No) = 0, and N; is an n-dimensional embedded
C' submanifold of R"** for each j > 1.

In order to study the geometry of critical points of the area functional, it is
desirable to have some notion of a tangent space so that tangential derivatives
can be defined. We will define so-called approximate tangent spaces to be linear
subspaces arising as limits of rescalings of a set M in some appropriate topology.

We first introduce the following rescaling function.

Definition 2.1.4. We define n,,: R"™ — R"™* to be the function which first

translates x to the origin and then rescales by a factor p=t, that is to say

y—x

N, (y> =
g p

With this in hand we define the approximate tangent space of a measurable
subset M C Rtk

Definition 2.1.5. Suppose that M C R"* s H"-measurable and 0: M — (0, 00)
is locally H™-integrable. We say that the n-dimensional subspace P C R is the

approximate tangent space for M at x with respect to 0 if

lim [ F)8 -+ p)dH () = 6(a) [ F)aR ().

N0 ﬁz,p(M)
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for every compactly supported continuous function f € C.(R™*F).

Remark 2.1.6. If M has locally finite H™-measure, so that H"(MNK) < oo for
each compact K C R"* | then we can take 0 = 1, and the definition is equivalent
to saying that the Radon measures H".n, ,(M) converge in the usual weak™ sense
to H"LP as p ™\ 0.

Notice also that if M C R™™ is H"-measurable, and 0: M — (0, 00) is locally
H"-integrable, then the set Ms = {x € M | 0(x) > d} has locally finite H"™-
measure. We can then show that for H™-almost every x € Ms, the approximate
tangent space to M with respect to 6 coincides with the approximate tangent space
to Ms with respect to 0 = 1. Hence we see that for any two choices of function,
0 and 0, the approzimate tangent spaces to M with respect to 0 and 0 coincide
H™-almost everywhere. In light of this we denote the approximate tangent space

to M at x by T, M wherever it exists.

The assumptions we make on M in the above definition in no way guarantee
the existence of approximate tangent spaces at any given point. It turns out
there is an important characterisation of countably n-rectifiable sets in terms of

the existence of approximate tangent spaces.

Theorem 2.1.7. Suppose that M C R"* is H"-measurable. Then M is count-
ably n-rectifiable if and only if there is 0: M — (0,00), a locally H™-integrable
function with respect to which there exists an approximate tangent space to M at

H™-almost every x € M.

Remark 2.1.8. The proof uses the fact that if M is countably n-rectifiable, then
it can be written in the form M = My U U; M; where H"(My) = 0 and the M;
are patrwise disjoint and M; C N; for each j, where N; is an n-dimensional

C'! embedded submanifold. In this case, one can show that for H"-almost every
x € M;, we have that T, M exists and T, M =T, Nj;.

2.1.2 Tangential derivatives

Given a countably n-rectifiable set M and a point x € M at which T, M exists,
it is possible to define tangential notions of gradient, divergence and so on by
projecting onto the tangent space in the appropriate way. For M countably n-

rectifiable the approximate tangent space exists at almost every point, and hence
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these notions of tangential derivatives are well-defined as locally L' functions for
instance. This allows us to make sense of what it means for a function to satisfy

a partial differential equation in an integral sense on M.

Definition 2.1.9 (Tangential gradient). Given an n-dimensional subspace S C
R™* and a C* function f: R"™* — R we define the gradient on S to be

Vi f(x) == ps(Df(2)),

where D(-) denotes the usual gradient on R™* and ps denotes the orthogonal
projection onto S. Given M C R™* countably n-rectifiable we define the gradient
on M by

VMf(x) = VM f(2) = prou(Df(z)),

for any x at which the approximate tangent space T, M exists.

If M happened to be a smooth embedded submanifold of R"** then VM
would be well-defined at every point and coincide with the usual notion of gradient
inherited from the ambient space R"**.

We can define the divergence in a similar manner.

Definition 2.1.10 (Tangential divergence). Suppose that S C R™™ is an n-
dimensional subspace and that X : R"F — R"* s g C vector field. We define
the divergence on S by
n+k B n
divs X (z) :=trg(DX(z)) = z p’D;X;(z) = Z 7 - D X,

ij=1 i=1

where (p¥) denotes the matrix of the orthogonal projection to S, {r,..., 7.} is an
orthonormal basis for S, and D.,(-) is the directional derivative in the direction
T;. As before, given M countably n-rectifiable, we define the divergence on M at
any x where T, M ezists by

divy X (z) := divy, X ().
Finally we define the differential as follows.

Definition 2.1.11 (Differential). Given f: R"™* — RY where N > 1, the dif-
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ferential at a point x € R"* is the linear map
dfy: R"F 5 RN 17— D, f(2),

where D, is the directional derivative in the direction 7. In particular, if M is
countably n-rectifiable and x € M s a point where T, M exists, then we define
the differential on M at x to be the restriction d™ f, := df.|r, -

2.1.3 Rectifiable n-varifolds

We can now define a rectifiable n-varifold to be a countably n-rectifiable set

together with a multiplicity function.

Definition 2.1.12 (Rectifiable n-varifold). A rectifiable n-varifold V' = v(M, )
is the equivalence class of the pair (M, 0), where M is H"-measurable and count-
ably n-rectifiable and 0: M — (0,00) is locally integrable, under the equivalence
relation (M,0) ~ (M',0") if and only if H"(M\ M YU (M'\ M)) =0 and 0 =0’
H™-almost everywhere on MNOM'. We say V is an integer multiplicity rectifiable
n-varifold, or more briefly an integral n-varifold, if 8 takes values in the positive

integers.

Notice that any C! submanifold of R"** automatically induces an integral
n-varifold of the form |M| = v(M, 1,). We will use the notation |- | to denote

the multiplicity one varifold corresponding to a smooth submanifold.

Definition 2.1.13 (Weight measure). For any rectifiable n-varifold V= v(M, )

we define the weight measure
V]| :=H"0,

where we understand 8 = 0 on the complement of M. In other words, for any

H"-measurable subset A C R we have

IVI(A) ::/Aed’H”:/AmMHdH”.

Notice that since 0 is assumed to be locally integrable, it follows that ||V is a

Radon measure on Rk,

33



Given an integral n-varifold V' = v(M, 6), we allow V to inherit the notions of
tangential derivative of Section 2.1.2 corresponding to the underlying countably
n-rectifiable set M (which we can take to be spt||V||). Thus, for example, the
tangential gradient on V is denoted V. We will often use this notation without
explicitly stating the relationship between M and V unless there is the possibility

for confusion.

2.2 Stationarity and compactness

One of our primary motivations for introducing the concept of a varifold is that
we would like to be able to use compactness theorems to do blow-up analysis of
minimal surfaces. However given a sequence of integral n-varifolds V7, and using
only compactness theorems for Radon measures applied to a sequence ||V7||, we
can’t say much more about the limit beyond the fact that it’s a Radon measure.
It is unclear under what circumstances it actually corresponds to an integral n-
varifold for example. In order to pass geometric information to the limit we must
taken an even broader view, which is why we introduce the notion of a general

n-varifold.

2.2.1 General n-varifolds

Like rectifiable n-varifolds, general n-varifolds are still Radon measures, but with-
out any restriction on the geometry of the support. This allows for very wild be-
haviour, and also means that approximate tangent spaces will not exist in general.
Instead we build tangent space information into the measure itself by considering

measures over the Grassmann bundle.

Definition 2.2.1. We denote by G(n + k,n) the Grassmannian, that is to say
the space of all n-dimensional linear subspaces of R"*. Given a set A C R"tF
we denote by G,(A) the Grassmann bundle over A, that is

Gn(A) ={(z,9) |z €A SeGn+kn)}=AxGn+kn).

Definition 2.2.2. Given an open set U C R"™*  a general n-varifold V in U is

a Radon measure on G, (U).
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Remark 2.2.3. Any rectifiable n-varifold V- = v(M, 0) induces a corresponding

general n-varifold via the formula
V(A) = ||V|(m(TM N A)), AcCG,(U)
where m is the projection onto the Euclidean factor of G,(U) and
TM = {(z, T, M) |x € M, T,M exists at z}.
We endow the space of general n-varifolds with the weak™ topology of Radon
measures on G, (U). In particular we have the following definition.
Definition 2.2.4. Suppose that VI for j > 1 and V are general n-varifolds on

some open set U C R" . We say that VI — V as varifolds as j — oo if

lim flz,8)AVi(z, S) = / (e, S)AV (z, S),

Jj—o0 J@, (U) n(U)
for every f € C.(G,(U)).
We also define the weight measure of a general n-varifold as follows.

Definition 2.2.5. Given a general n-varifold V in U C R"™* we define the

weight measure as follows:
VII(A) := V(G,(A :/ avi(z, S).
IV][(A) (Gn(A)) ) (2, S)
Notice in particular that if V' is rectifiable then this definition coincides with

the previous definition of weight measure for a rectifiable n-varifold.

Remark 2.2.6. Varifold convergence implies convergence of the weight measures
as Radon measures, and hence also that the supports of the weight measures con-

verge locally in Hausdorff distance.

2.2.2 First variation and stationarity

We wish to use varifolds as models for minimal surfaces, and so the first step is
to develop an analogue of the first variation formula (1.1.1). To do so we need to
be able to deform varifolds along a vector field, which requires the notion of an

image varifold.
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Definition 2.2.7. Let V be a general n-varifold. Suppose that U, W C R™* qare
open, and f: U — W is C' and that f restricted to spt||V||NU is proper. Then
we define the image varifold fxV in W by

FaV(A) = /F , Jsf @V (. S) (2.2.1)

for any Borel set A C G,(W), and where the function F: G} (U) — G,(W) is
defined F: (x,S) — (f(x),df.(S)), and

Jsf(z) = (det((dfs|s)* o (dfs]s))) > for all (z,5) € G, (U),
Gr(U) ={(z,5) € Gu(U) | Jsf(x) # 0},

where (df,|s)* denotes the adjoint of df,|s.

Remark 2.2.8. If V =v(M,0) is a rectifiable n-varifold, then

f#v - V(f(M),?),

where

Oz)= > 0(y).

yef~1(z)

Furthermore, if f is one-to-one then 0(x) = 0(f~(x)). Notice that 0 is locally

integrable by the area formula, and that in fact

1EVIOV) = [ dlfeVl = [ Tusaivi,

where Jy f is the Jacobian

Taf = \Jdet((dM f,)* 0 dM f,).

Given this notion of an image varifold, we can now define the first variation

of a general n-varifold.

Definition 2.2.9. If V' is a general n-varifold, then the first variation, which
we denote 8V, is a linear functional on CH(U;R"™*) defined as follows. Given
X € CHU;R"™) and K CcC U with sptX CC K, we denote by ¢; the one-
parameter family of diffeomorphisms pi(x) := x + tX(x). Notice that for |t|
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sufficiently small, ¢, are one-to-one onto U. We set

V(X) = LllpuVI(K)

t=0

Remark 2.2.10. By differentiating under the integral in (2.2.1), one can show
(see [51] for details)

SV (X) = /G 4, VX (D)AV (7, 5),

where divg is as defined in Section 2.1. Note in particular that if V = v(M,0) is

rectifiable, then the first variation can be written
OV (X) = [ divarX(2)d |V (@),
U

Remark 2.2.11. We restrict to K in order that the derivative is well-defined,
since @iV is only guaranteed to have locally finite mass. Because sptX CC K,

we are discarding a part of V' which remains fized as t varies.

We can now define what it means for V' to be a critical point of the area

functional.

Definition 2.2.12. We say that V is stationary if 6V (X) = 0 for every X €
CHU; R F).

Remark 2.2.13. Notice in particular, that if V' corresponds to a classical sub-
manifold, then V is stationary if and only if the corresponding submanifold is

minimal.

More generally we say that V' has locally bounded first variation in U if for

every compact subset W CC U we have
0V(X)| < Csup|X],
U
for some constant C' = C(W) < oo and for all X € CH(U; R""*) with sptX C W.

In this case, it follows from the Riesz representation theorem, see Simon [51],
that the total variation measure of JV, denoted ||dV]|, is a well-defined Radon
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measure on U characterised by
[SV[[(W) = sup [0V (X)),

where the supremum is taken over all X € C}(U; R"*) with | X| < 1 everywhere
and sptX CcC W.
In fact the Riesz representation theorem implies further that there is a ||dV/]|-

measurable function v, with |v| =1 ||§V[|-almost everywhere, such that
SV (X) = /G 4, X @)V (2. 9) / X(2) - v(x)d |6V | ().
(U

In particular, if ||0V|| is absolutely continuous with respect to ||V, by applying

the Radon-Nikodym differentiation theorem (see Simon [51]) we may write

SV (X) :/GR(U) divs X (z)dV (z, S) /X DAV(@),  (2.2.2)

with H := vDyy |0V ||(z), where Dyy||0V||(z) denotes the Radon-Nikodym
derivative of ||dV]| at = with respect to ||[V]|. In view of the classical formula
(1.1.3) we call H the generalised mean curvature of V.

The following property of stationary varifolds will be important later, see

Simon [51] for the proof.

Theorem 2.2.14 (Constancy theorem). Suppose that' V' is a stationary general n-
varifold in an open set U C R""* and that spt||V'|| C M, where M is a connected
n-dimensional C* submanifold of U. Then V is rectifiable and V = v(M,0y1,;)

for some constant 6.

2.2.3 Monotonicity formula

While general n-varifolds can be very wild, we expect stationarity to imply some
level of regularity. We next introduce one of the most fundamental results con-
cerning stationary varifolds: the monotonicity formula. It gives us control of the
rate of growth of area for stationary varifolds, and also has implications for the
asymptotic behaviour at singularities. Further basic regularity results will be

discussed in Section 2.3.
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Theorem 2.2.15 (Monotonicity formula). Suppose that V' is a stationary general
n-varifold in U. Then for any v € U and 0 < o < p < dist(z, 0U) we have

[VII(Bo(x))  [[V][(Bo(x)) :/ ps:(y — @)
on on n(Bo(@\Bo(2)) |y — x["+2

dV(y,S), (2.2.3)

where pg1 denotes the projection to the normal space of S.
In particular, the mass ratios p~"||V||(B,(x)) are monotone non-decreasing

as a function of p.

Remark 2.2.16. If V = v(M,0) is rectifiable, (2.2.3) can be written

VII(B,(x VI(Bs(x y — x)*|?
[VI(B,@) _ IVI(Eo(z) _ / =21 v,
p o G (Bo(2)\Bo (2)) |y — ]

where (-)* denotes the orthogonal projection to (T,M)* wherever T, M exists.

Since the mass ratios are monotone, we may pass to the limit p \, 0, which,

after a suitable renormalisation, we define to be the density at that point.

Definition 2.2.17. Given a stationary general n-varifold V in U and x € U we
define the density at x, denoted O(||V||,z) to be

o111 gy M) 024

where w,, denotes the volume of the unit ball in R™. The ratios on the right
correspond to the mass of the varifold in the ball B,(x) normalised by that of a
multiplicity 1 plane through the centre of the same ball.

One can check that if V' = v(M,0) is rectifiable, then at a point  where an
approximate tangent plane exists, we have
V(B 1
VB, @)

= lim
PO WpP" PNO Wy P

[, ., P)aH () = 6(x).

Hence, for any stationary rectifiable n-varifold V' = v(M,#), it follows that
O(|V]l,) = 6(-) H™almost everywhere. Hence we can choose O(||V],-) as a

canonical representative for 6(-).

Lemma 2.2.18 (Upper semi-continuity of density). Suppose that V7 for j > 1

and V are stationary general n-varifolds in an open set U C R"* with Vi — V,
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and that x; € U with x; — x € U. Then

limsup O([[V7|, ;) < ||V, z)
j—o0
Proof. Fix sequences {z;} C U with z; — = € U and V7 stationary with V7 — V.
Let £ > 0. Since ||[V?|| — ||[V] as Radon measures and the V7 and V are all

stationary, it follows that for p > 0 sufficiently small and j sufficiently large we

have
V(B
OV].x) += > B, <
Wn P 2
VB, )
WnP"
HV]H(Bpﬂmjf:d(xj)) (,0 — |.Tj — a:|)”
wn(p = |zj = 2|)" pr
; (p—|x; —x|)™
> 6(||V7), ;) L1 = 2"
Taking the lim sup of both sides and letting € N\, 0 we get the result. O

Remark 2.2.19. One can show that the density O(||V||,-) ezists ||V|-almost
everywhere in U if the first variation of V' is merely locally bounded in U. This
follows from the Radon-Nikodym differentiation theorem and the addition of a

suitable exponential factor in the monotonicity formula, see Simon [51] for details.

2.2.4 Compactness theorems

General varifolds, being Radon measures on a Grassmann bundle and hence dual
to compactly supported continuous functions on the Grassmann bundle, inherit
compactness properties automatically from the Banach-Alaoglu Theorem (see for
example [6]). Indeed given a bounded sequence of general n-varifolds V7 there
exists a subsequence V7' and limit V such that V7" — V in the weak® sense of

measures. That is to say given any f € C.(G,(U)) we have

lim fle,S)AV7 (z, S) = / (e, S)aV (z, S).

J—=00 JG,(U) Gn(U)

Notice in particular that (z,5) +— diveX(z) is a valid test function for any

X € CHU;R™*). Thus a converging sequence of stationary general n-varifolds
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must converge to a stationary general n-varifold. General n-varifolds however
have very bad a priori regularity, and so when working on problems in geometry
it is desirable and far more natural to work with rectifiable n-varifolds. Hence
in order to establish a good compactness theorem for rectifiable n-varifolds, we
need a rectifiability lemma that will allow us to conclude, for example, that under
certain reasonable assumptions the space of stationary rectifiable n-varifolds is
closed under convergence of general n-varifolds. Such a rectifiability lemma was

originally proved by Allard [1] (see also [51]) and is stated as follows.

Theorem 2.2.20. Suppose that V' has locally bounded first variation in U, and
that ©(||V||,z) > 0 for ||[V||-almost every x € U. Then V is a rectifiable n-

varifold and so for some countably n-rectifiable set M and locally H™-integrable
0: M — (0,00) we may write V= v(M,0).

Combining this with the compactness of general n-varifolds inherited from
their definition as Radon measures, as well as upper-semicontinuity of the density

we arrive at the following compactness theorem.

Theorem 2.2.21 (Compactness). Suppose that V7 is any sequence of rectifiable

n-varifolds in U satisfying

igg(ll‘/jll(W) +l0V7][(W)) < oo,

for each W CC U, and that O(||V7||,z) > 1 on U\ A; for some sequence of sets
A; C U with ||[VI[(A; N W) = 0 as j — oo for every W CC U.

Then there is a subsequence V7' and a rectifiable n-varifold V with locally
bounded first variation in U such that VI — V in the sense of varifolds (i.e.
weak™ convergence of Radon measures on G,(U)), O(||V||,z) > 1 for |V||-almost

every r € U and
[6V][(W) < liminf |6V j/”(” )
j'—o0

for every W CC U.

Remark 2.2.22. Allard [1] showed, in addition to the above, that if each of
the V7 is integral, then so is the limit V. In this case the density lower bound

hypothesis is trivially satisfied along the sequence.
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Notice also that if each of the V7 is stationary, then so is the limit V, and
furthermore one only needs local mass bounds along the sequence, as the first

variation measure is zero. We summarise this in the following corollary.

Corollary 2.2.23. Suppose that V7 is a sequence of stationary integral n-varifolds

in an open set U C R"* and that

sup [V7[|(W) < oc,
j=>1

for every W CC U. Then there is a subsequence VI’ and a stationary integral
n-varifold V such that VI' — V in the sense of varifolds.

2.2.5 Tangent cones

As mentioned previously, one of the primary reasons for working in the space of
varifolds is that we would like to conduct a blow-up analysis at singular points of
minimal surfaces. The monotonicity formula and compactness theorem together
imply that sequences of rescalings at a point will converge subsequentially to some
limit varifold. The structure of these limits, i.e. the asymptotics of the varifold,
can be used to prove local regularity properties at that point.

We recall the function 7, ,, defined by

y—x
P .

Nep(y) =

Suppose that V is a stationary integral n-varifold. Let p; € (0, 1) for j > 1 satisfy
p; \ 0, and let = € spt||V||. Then it follows from the monotonicity formula that
the sequence V7 := Nz,p;#V has locally bounded mass, indeed for any R > 0 and
j sufficiently large we have

IVZI(Br(0) _ [IVII(Brp,(z)) _ [[VII(Bi(x))

wy, R" wn(Rp;)™ — W,

Hence by the compactness theorem, in particular Corollary 2.2.23, it follows that
V3 — (' in the varifold sense for some stationary integral n-varifold C' in R"*+*.

The monotonicity formula implies

IC1I(B,(0)

=6V

4
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for every p € (0,00). Applying the monotonicity formula again we have

J_|2

ly
d||C =0
L, o iy IC1)

for every p € (0,00). This in particular implies that y* = 0 for ||C||-almost every
y € spt||C||, from which one can deduce that C' is a cone, i.e. that g ,+C = C
for every p € (0,00). See Simon [51] for the details.

Definition 2.2.24. Given a stationary integral n-varifold V in U, and a sequence
pi 0 we call any subsequential limit of the sequence 1, ,,4+V a tangent cone at
x. We denote by VarTan(V, x) the set of all tangent cones of V at x € U.

Remark 2.2.25. Notice in particular that we allow for the possibility that there
could be multiple distinct tangent cones at any point. Indeed one cannot rule out
a priori that different sequences of rescalings could produce different limits. The
uniqueness of tangent cones has thus far only been established in various special

circumstances. For a list of some of the known results, see [65].

2.3 Regularity theory

In this section we will be interested primarily in rectifiable n-varifolds, which
we refer to simply as varifolds or n-varifolds. As has been observed already,
the introduction of the notion of varifolds has given us access to compactness
theorems which are useful tools when doing analysis. To obtain these we have
sacrificed a large amount of a priori regularity. One would expect however that
stationary varifolds would exhibit better than worst case regularity in general, in
part because fast oscillations or jagged corners, which contribute to the singular
structure, are somehow wasteful of area. In this section we aim to put these
heuristic arguments on a firmer footing, and introduce the main tools that are
used in the regularity theory of stationary varifolds. To begin with we formalise

the definition of the regular set and the singular set that was given in Section 1.2.

Definition 2.3.1. Given a varifold V we define the regular part of V', denoted
regV , to be all points x € spt||V| for which we can find an open set U with
x € U such that spt||V||NTU is a C* submanifold of U containing x. We define
the singular set, denoted singV, to be the set of all points x € spt||V]| such that
x & regV.
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2.3.1 Allard’s Theorem

One of the first major steps in the regularity theory of integral varifolds was the
following regularity theorem of Allard [1]. Allard assumes only mass bounds,
stationarity and L?-closeness to a plane in the unit ball, and is able to conclude
that the support of the varifold, in the interior, consists of a C** graph with
estimates. Since Allard’s seminal paper, there hasn’t been much progress on the
general regularity of stationary n-varifolds. See Section 1.2 for a discussion of
some of the known results that have been proved in the presence of additional

assumptions.

Theorem 2.3.2 (Allard regularity). Suppose that V- = v(M,0) is stationary in
B1(0) C R™* and that 0 € spt||V]|, O(||V |, z) > 1 for every x € spt||V]|. Given
a, 0 € (0,1), there exists € = e(n, k,a,0) € (0,1) such that if
(1)
IV1I(B1(0))

Wn

<2-—90, and
(2)
/ dist(z, P)d||V|(z) < ¢
B1(0)
for some n-dimensional subspace P C R"*¥,

then there is f = B(n, k,«,6) € (0,1) such that spt||V||NBs(0) = graph(u)NBsz(0)

where w: P — Pt is a CY* function satisfying the estimate

1/2
il < [ aseta PaIVI@)

where C' = C(n,k,a,d).

Remark 2.3.3. 1) By standard Schauder theory for the solutions of elliptic
partial differential equations, the function u is in fact smooth, with estimates

on the derivatives of any order.

2) The theorem implies that if V = v(M, 0) is stationary, 0 > 1 and also 6 < 2
H"-almost everywhere, then any point x where T, M exists is reqular. Indeed
at such a point we have O(||V]|,x) = 8(z) <2 — 9§ for some § = §(x) > 0.

The monotonicity formula then implies that at small scales the mass ratios
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of balls centered at x are less than 2 — §/2 say, and the existence of T, M
implies that at small scales V' is also L*-close to a plane (i.e. T,M ). Thus
picking a scale small enough such that both of these are true, then rescaling
to unit scale and translating to the origin we can satisfy all the assumptions
of Allard’s theorem.

3) It is currently an open question as to whether H™(singV') = 0 with only the
assumption that 6 > 1. The answer is yes in codimension 1 if we assume
in addition that V is stable, due to work of Wickramasekera [64], and also
in any codimension if we assume V is area-minimising, due to work of

Almgren [4].

4) It is possible to prove versions of the monotonicity formula and also Allard’s
theorem if we relax the assumption of stationarity and instead assume only
that the varifold has generalised mean curvature H LY (U) for some
p > n. In this case one must take « =1 —n/p € (0,1). The fact that we
make take any o € (0,1) for V stationary follows from the fact that H=0

of course implies H € L? (U) for any p > 1.

loc

Corollary 2.3.4. If V is stationary in some open set U C R"™* and we have
O([|V]l,z) = 1 for all x € spt|V||NU, thenregV is open and dense in spt||V||NU.

In particular, singV is closed and nowhere dense.

Proof. Suppose that y € spt||V| NU and 0 < p < dist(y, OU). Define

oIV, =),

in
zespt||V[NBy(y)

and note that & > 1. Choose z € spt||V|| N B,(y) such that O(||V]],2) < 3a/2,
which we may do by definition of a. Then by upper semi-continuity of the density,
it follows that a < O(||V]|,z) < 3a/2 for every = € spt||V]| N B,(z) for some

suitable o > 0. Therefore we may define
Vi == v(spt||[V[| N By (2), @ OV, sptviing.2))s

and we find that V; is stationary in B,(z) and satisfies 1 < §(z) < 2 for every = €
spt||V1]|. Consequently by part 2) of the preceding remark we find H"(singV;) =

0, from which the conclusions readily follow. O

45



2.3.2 Stratification of the singular set

It is possible to stratify the singular set of a stationary varifold in the following

simple but powerful way.

Definition 2.3.5. Given a stationary cone C, we define the spine of C, S(C),
to be the set of points

S(C) = {z e R"™*[6(|C],2) = ©(|C],0)}.

It is simple to show using the monotonicity formula (see for example Simon
[53]) and upper semi-continuity of density, that ©(||C||,z) < ©(||C||,0) for any
z € R"™. Moreover one can show that if O(||C],0) = O(||C||,2) then spt|C||
is translation invariant in the z direction, and hence that S(C') is a subspace of

R"**. Given a stationary varifold V we define
S; = {x € singV | dimS(C) < j for all C € VarTan(V,z)},

that is, §; consists of all points in the singular set at which no tangent cone C
can be written C'= Ry(Cy x RIT), where R is a rotation. The following lemma
was first established by Almgren [4], and is itself a refinement of the dimension
reduction principle of Federer [18], see also Simon [51]. Analogous results for
energy minimising maps and mean curvature flow have been proved by Simon
[53] and White [61] respectively.

Lemma 2.3.6. For each j =0,1,...,n, we have

In particular this lemma tells us that if one wishes to prove some property
holds except on a set of small dimension, one needs only to classify the simplest
cones, i.e. those with low-dimensional cross section, and analyse behaviour at
points where those tangent cones occur. It is not necessary to completely classify
all cones.

In our case, we will use Lemma 2.3.6 slightly differently to show an abundance
of points with a density lower bound. Indeed, suppose V is a stationary varifold
and that S C singV C spt||V]| has positive H" !-measure. Then Lemma 2.3.6
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implies that H" !-almost every point of S has a tangent cone that is either a
plane with multiplicity at least 2, or has a one dimensional cross section. In the
latter case, the cross section must consist of at least three half lines meeting at
a point. If one can rule out the possibility that the cross section is exactly three
half-lines, then once again the multiplicity will be at least 2, and so H" !-almost
every point of S has density at least 2. The existence of many ‘good density
points’ will later be important as they are precisely where the main L? estimates
hold.

2.4 Two-valued functions

A crucial step in establishing the required L? estimates is establishing the graph-
ical approximation lemma (Lemma 3.2.6) in Section 3.2. Allard’s theorem allows
us to approximate much of the supports of the varifolds we will consider as single-
valued graphs over suitable planes, but this alone does not give us enough control.
Instead it is necessary to also approximate some of the support as the graph of
a two-valued Lipschitz function. The notion of a multi-valued function was first
introduced by Almgren [4], see also the more recent work of De Lellis-Spadaro

for an alternative approach [13].

Definition 2.4.1. We denote by As(R™) the set of all unordered pairs of points in
R™. A two-valued function on an open set Q C R™ is a function f: Q — Ay(R™).
We equip As(R™) with the metric G defined by

G(a,b) = min {\/\al “ 12+ Jaz — bal?, yflar — bl + Jas — blP} ,

where a = {ay,as} and b ={by,bs}. We also define

la| := G(a,{0,0}) = \/|a1|> + |az|?. (2.4.1)

We say that f is Lipschitz on € with constant L > 0 if

G(f(x), f(y)) < Llx —y|  forallz,y € Q
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and we define

G(f(x), f(y))

Lip(f) := sup { F—

‘x,yEQ, :U;éy}

Furthermore, we say that f is differentiable at x € Q if there exists a two-valued
affine function l,: R™ — Ay(R"™) of the form I,(y) = {A%y + b%, AZy + b5} for

constant matrices A?, A3 € R™ (k) and constant vectors b¥, b§ € R™, such that

i 9 W), l:(y))

= 0.
vor o —y

It is easy to see that [, must be unique if it exists, in which case we define the
derivative of f at x to be the unordered pair D f(x) .= { A7, A3}.

It turns out that Rademacher’s Theorem generalises to two-valued functions,
see [4] or [13] for the proof.

Theorem 2.4.2 (Rademacher’s theorem). Suppose that Q C R™ is open and
f:Q — Ay(R™) is Lipschitz, then f is differentiable almost everywhere, and
|Df(z)| < Lip(f) wherever Df(x) exists.

The final result we need is the following Lipschitz approximation theorem of
Almgren [4].

Theorem 2.4.3. Suppose that o, B, v € (0,1). There ezists ¢ € (0,1) depending
onn, k, o, B and v such that if V is a stationary integral n-varifold in By1(0)

satisfying:

(a) V satisfies the mass bounds

VI|[(B},., 5(0) x R
IVIBLAO) g qy g < MIBEOXRY
wn(1+7)" wn(l+9/3)"

(b) 'V satisfies the following height excess bound

[ dist(a R x {0}V I|() < e
Bi144(0)

then there exists a Lipschitz two-valued function f: BF(0) — Ay(R*) and an
H"-measurable set X C BY(0) such that:
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(1) Lip(f) < 8,

(2) we have the following bounds on the measure of ¥

H' () + [|[V[(E xRF) < C dist?(z, R™)d||V || (),

Bi14~(0)

where C' = C(n, k,a, 3,7),

(8) the support of V' coincides with the graph of f away from X, i.e.

spt[|V]| N ((B1(0) \ ) x RY) = graph|ppops(f).
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Chapter 3

Boundary regularity for

stationary varifolds

3.1 Motivation

As discussed in Chapter 1, relatively little is known about the boundary regularity
of stationary varifolds. Indeed the only known result assuming only stationarity
is due to Allard [2] with refinements by Bourni [7]. Having developed the relevant
terminology in Chapter 2, we now elaborate on what they were able to prove.
One of the barriers to investigating boundary regularity of stationary vari-
folds is that they lack a natural notion of boundary in the first place. Allard’s
result avoids this issue, as the only statement about the varifold’s boundary val-
ues appears in the conclusion, where the support is given by a classical smooth

manifold. In particular, he proved the following.

Theorem 3.1.1 (Allard ’75, Bourni ’14). For each € € (0,1), a € (0,1) there
is & = 0(a,e) > 0 such that if B is the graph over {0}**' x B}~1(0) of some
Che function w, with ||w|lio < § and w(0) = 0, and V is a rectifiable n-
varifold in By(0), which is stationary in B1(0)\ B, has 0 € spt||V]|, and satisfies
IVI[(B1(0)) < (1+9)/2, then we have the following conclusions:

1) There is u € R¥1 x {0} such that V has a unique tangent half-plane at

the origin given by

H={y+tu|ye {0} xR t>0}.

51



2) If P denotes the plane
P={y+tu|ye {0} xR t R},
then the height excess over P is small, i.e.

/ dist?(x, P)d||V ]| < &2.
B1(0)

3) M := spt||V]| N B1_-(0) \ B is a continuously differentiable submanifold,
closed relative to B1_.(0)\ B, whose closure in By_.(0) contains BNB;_.(0).
Further more M projects injectively onto P (under the orthogonal projection

to P).

4) If pr,ar and pp denote the orthogonal projections to the tangent space T, M
and the plane P respectively, then

‘pTzM - pP’ < CSUP{@ 5}7
for every x € spt||V| N (B1--(0) \ B).

5) If prom and pr,n denote the orthogonal projections to the tangent spaces
ToM and T,M respectively, then

\prom — prym| < Csuple, 0}z — y|?,

for every x, y € spt||V]| N (B1--(0) \ B).

Note that 3) implies that in 4) and 5) we can take the classical tangent planes

which exist at every point.

Remark 3.1.2. Allard’s original result required a CY' boundary, as this ensured
the nearest point projection to the boundary had enough reqularity to be used con-
struct test vector fields to plug into the first variation formula. Choosing vector
fields carefully one can show that analogues of the first variation and the mono-
tonicity formula hold at boundary points. The contribution of Bourni was to relax
this assumption to C** by constructing a new ‘distance’ function via a Whitney

partition, which was smooth but satisfied appropriate inequalities. Using this she
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was able to rederive the boundary monotonicity formula for C boundaries, and
hence generalise the proof of the reqularity theorem.

We also note that, as in the interior theorem, one can also relax the station-

p
loc

arity assumption to the generalized mean curvature being in L, . for p > n.

The problem considered in this chapter is motivated by the following question,
which arises naturally in light of the above theorem: “What can we say about
the local regularity of a stationary varifold at a boundary point where there is a
tangent cone consisting of two half-planes meeting along their common bound-
ary?”. We can reformulate this as the following. Suppose that B is a Ch* curve
through the origin, and that V' is a stationary integral n-varifold in B;(0) \ B.
Moreover suppose that V is close in mass and in L? to a pair of half-planes C(©
meeting along Ty B. Can we conclude that spt||V'||N B, (0) consists of two smooth
sheets meeting along B for some v > 07

It is not hard to see that without additional assumptions, this cannot be
the case. Consider the following example: let n = 2 and take three half-planes
meeting at angles of 27/3 radians along a common line. Now take one of the
half-planes and consider a C® curve B which lies completely within it, passes
through the origin, and is tangent to the axis along which the half-planes meet at
the origin. It is possible to construct B satisfying these conditions, but such that
it oscillates wildly, touching the axis at very many points. Then near the origin
one can find many points where B touches the axis, and many points where B is
away from the axis. Now delete everything on one side of B, so that what remains
is two half-planes meeting at the origin, and a jagged piece of the third half-plane
that comes out from the axis to meet B, see Figure 3.1. This will be stationary in

B1(0) \ B, and we can also ensure L2-closeness to a pair of half-planes, but near

Figure 3.1: A counterexample to the desired regularity.
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the origin the tangent cones at points on B can switch arbitrarily often between
a single half-plane, or a pair of half-planes meeting along an (n — 1)-dimensional
subspace, so the desired regularity statement does not hold.

In the proof of his boundary regularity theorem, Allard makes crucial use of
a reflection principle which allows him to apply his interior theorem. In order to
mimic his arguments, one would need to develop a suitable, analogous interior
theorem. In this case, that corresponds to an interior regularity theorem for a sta-
tionary varifold that is L2-close, and close in mass, to a pair of planes intersecting
along an (n — 1)-dimensional subspace. In particular, one would like to conclude
that in the interior, the support consists of four smooth sheets meeting along
the subspace or a smooth curve close to the subspace. Again however there are
simple counter examples. For example, take a pair of planes intersecting along an
(n—1)-dimensional axis, and desingularise the intersection by introducing smooth
‘necks’ to obtain a Scherk style surface, see Figure 3.2. Such a desingularisation
is guaranteed to exist by work of Kapouleas [36]. By scaling, this can be made
arbitrarily close to a pair of planes, but the curvature in the neck regions blows

up, so there is no hope of proving any sort of quantitative regularity properties.

Figure 3.2: A smooth minimal surface close to a pair of intersecting planes.

In the remainder of this chapter we show that under additional assumptions
which rule out the above situations, we can prove the aforementioned interior
theorem. Specifically we assume the absence of triple junction singularities, i.e.
points at which locally the varifold consists of three smooth sheets meeting along a
common boundary, as well as the presence of ‘plenty’ of singularities near the axis.
Thanks to an argument using the reflection principle this immediately implies a
corresponding boundary regularity result. We will state the results precisely in

Section 3.6, but roughly speaking our main results are stated as follows.
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Theorem (Regularity theorem). Suppose that V' is a stationary n-varifold in
B1(0). If V is sufficiently close in L* and in mass to a pair of planes intersecting
along an (n — 1)-dimensional azis, and if singV satisfies certain structural as-
sumptions; then in a neighbourhood of the origin spt||V|| consists of four smooth

n-dimensional submanifolds meeting only along a common (n — 1)-dimensional

CYHe submanifold.

Corollary (Boundary regularity corollary). Let B := {0}**! x R*"L. IfV is a
stationary n-varifold in By(0) \ B and is sufficiently close in L* and in mass to
a pair of half-planes meeting along B, and if singV satisfies the same structural
assumptions as in the above theorem; then in a neighbourhood of the origin spt||V||

consists of two smooth sheets meeting along B, their common boundary.

Remark 3.1.3. It currently remains open whether the regularity theorem can be
used to generalise the corollary to the case where B is instead a C* submanifold

with suitably small CY* norm.

We prove the interior regularity result by applying the so-called blow-up
method of Simon [52] with refinements due to Wickramasekera [64]. Simon stud-
ied multiplicity one classes of minimal submanifolds, and was able to prove esti-
mates to control the linearisation of the minimal surface operator (which we refer
to as the blow-up), at singularities that possess a cylindrical tangent cone. These
are cones which, after rotating, can be written in the form Cy x R!, where C,
is a stationary m-dimensional cone with an isolated singularity, and m + [ = n.
Wickramasekera has adapted these techniques to study the singularities of stable

hypersurfaces, most notably in [64], and also in [62, 63].

The key ingredient in the proof of the main theorems is an ‘excess improvement
lemma’ (see Lemma 3.5.1). This lemma says that given a stationary varifold V'
which is sufficiently close to a cone C© consisting of a pair of planes intersecting
along an (n — 1)-dimensional subspace in L*-distance, we can find a new cone
C, consisting of four half-planes meeting along an (n — 1)-dimensional subspace,
such that the L2-distance to C at a smaller scale # has decayed by a fixed power

of 6. Iterating this lemma carefully will establish the main theorems.
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3.1.1 Notation and organisation

We now introduce some of the basic notation used throughout this chapter. We
work in R™*. We will denote points X € R™™* with capital latin letters, and
make the identification X = (z,y) where x € Rt and y € R""1. We define
B := {0}*1 x R""! and we define the function r = r(X) := |2| = |(x,0)], i.e.
the distance to B.

We denote by C the collection of all cones C such that spt||C|| consists of four
half-planes meeting along B, and O(||C||, X) = 1 for all X € spt||C| \ B. We
let H; for i = 1,...,4 denote the half-planes making up C. For any C € C we
necessarily have the decomposition C = Cy x R"™!, where spt||Cy|| consists of
four half-lines meeting at 0.

We denote by Ry = Ro(n) > 0 a fixed radius that is to be chosen later. Given

an n-varifold V' in Bpg,(0) we define the following two kinds of height excess
avie) = (| | dseX sV
Bl\(Bk‘HXR” 1)
1/2
v, aseescnan)
B,
and

) 1/2
B = (/[ st (X, sptl[Cdlv)

We also define the following open neighbourhoods of subsets of a half-plane, which

we refer to as (-conical neighbourhoods.

Definition 3.1.4. Let H be an n-dimensional half-plane with boundary B and
denote by p the orthogonal projection onto the n-dimensional plane containing H.
We define the [-conical neighbourhood of a relatively open subset U C H to be
the set

Cu(U,B) = {(z,y) € R™™ | [p1((2,0))| < Blp((x,0))], p(z.y) € U}.

In particular C(H,3) := Cy(H, ) is an open ‘wedge’ containing H, consisting
of all points © whose distance from H is at most 3 times the distance of p(x) to
the axis B. Given a relatively open subset U C H, Cy(U, ) is simply C(H, [3)

56



intersected with Uycy (z + HY).

Given a varifold V', and cones C, C¥ € C, we will often assume the following

for appropriately chosen €4 € (0,1) and d4 € (0,1/4].
Hypotheses A. 1) C, C ¢ C with disty(spt||C||NBy, spt||C||NB;) < €.
2) V is a stationary n-varifold in Bg,(0) with

[V II(Br,(0))

<2+ d4.
wnRO" =2+ 04

8) V satisfies Qy(C®) < gy4.

Remark 3.1.5. Note that we could also have used L* distance in part 1) of
Hypotheses A, since the definition of C implies that these two notions of distance

are Lipschitz equivalent.

In later chapters we will need to make certain structural assumptions on the

singular set.

Definition 3.1.6. We denote by V the class of all n-varifolds V' in Bg,(0) sat-
isfying the following.

(M1) V' has no triple junction singularities in B1(0) \ B.
(M2) The orthogonal projection of singV N By to B has full H"*-measure.

Remark 3.1.7. Any varifold arising as the limit of smooth submanifolds cannot
have any triple junction singularities, so for such a V' condition (M1) is auto-

matically satisfied.

The structure of the remainder of this chapter is the following. In Section
3.2 we establish graphical approximation results which imply that away from the
axis, the support of V' must be a smooth graph; in Section 3.3 we prove analogues
of Simon’s L? estimates; Section 3.4 contains the construction of blow-ups and
the proofs of their regularity properties; Section 3.5 contains the proof of the
crucial excess decay lemma; and finally Section 3.6 contains the proofs of the
main regularity theorem and the boundary regularity corollary; finally in Section

3.7 we construct a cover that is of crucial importance in Section 3.2.
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3.2 Graphical approximation

In this section we prove results that allow us to parametrise much of spt|V||
as the graph of either a smooth single-valued function or a Lipschitz two-valued
function. Rescalings of the single-valued function will be used later to construct
blow-ups, whereas the two-valued functions play an important role in proving the
main L? estimates of the next section. Crucial in all of this is the construction of
a particular covering by toroidal regions, with bounded intersections. Following

Simon [52], we first introduce the following notation.

Definition 3.2.1. Given p, k > 0 and ( € R"™L, and with v < 1 fized, we define

TP,H(C) = {(x,y) S Rk+1 x R 1 (|x| — p)2 + |y — C|2 < H2(1_7>2p2} )

4
Let C e C. Welet H; fori=1,...,4 denote the four open half-planes making up
sptl|C| \ B, and define D}, (C) := Tp.(¢) N H; fori=1,...,4. We also define
U;,K(C) to be the open ball centred on H,; whose intersection with H; is precisely

Dy, (€)-
Remark 3.2.2. Note that D, . (¢) is a disk in H; with radius k(1 —)p/2.

We then are able to construct a cover with the following properties.

Lemma 3.2.3. Given ¢ <1, v < 1 it is possible to choose (&;,¢;) € B1(0)\ B for
i € N such that Tl (G;) C B1(0) \ B for each i, (Tig,2¢/9(¢;)) are disjoint, and
(Ties1,c/2(Gi)) cover B,(0)\ B. Moreover there is N = N(n) such that (Ti¢,|.c/2(G))

can be divided into N(n) disjoint subcollections.

The proof is straightforward. One simply chooses a maximal disjoint collec-
tion of tori of the form Tig,|2¢/9(¢;), then checks that the conditions all hold for
this collection. We provide the details in Section 3.7. The cover (Tig,|c/2(Gi))
constructed above will be employed several times in that which follows. Be-
fore we state the graphical approximation lemmas, we choose a good value for
c. Note that there is a Sao = Bewo(C®) < 1 such that C(HZ‘(O),S/Bc(O)) are
pairwise disjoint. Assuming ecwo = £co (C®) is small enough and C € C is
such that disty(spt||C|| N By, spt|CP|| N By) < eqw, we have C(H;,2Bc0)

are pairwise disjoint also. Thus we may choose ¢ = ¢(C®) < 1 small such
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that Ul .(¢) € C(H;,28cwm). Hence we have U, (G1) N UéQLC(Cg) = () for any
(&1,G1) € Hy, (&2,C) € Hj with i # 5.

In Hypotheses A we assume that the mass ratios of V' in the ball By, are
bounded by 2+ 4. Later we want to apply estimates on balls that are not centred
at the origin. To do so we need the mass ratios of these balls to be bounded also.
The first lemma shows us that provided we choose R big enough initially, in a
way that depends only on n and d, we can ensure that all balls with centres close

to the origin enjoy good mass ratio bounds also.

Lemma 3.2.4. Let 69 > 0. There exists Ry = Ro(n, ) > 2 such that if § > d,

V' is stationary in Br,(0) and satisfies

1V 1I(Br, (0))

<249
wn, R§ =e+o

then for any x € B1(0) and any p € (0, Ry — |z|) we have

IVII(B,(x))

<2+ 20.
Wy p"

Proof. Using the monotonicity formula we have

IVI(By(z) _ [IVII(Bry-jai(2))
Wnpn N wn(R0_|fE|)n
_IVI(Br(0) Ry
T wally (R fxf)
1
(1= Re")m

< (2+49)

Evidently, the result will follow if Ry is chosen suitably large depending on n that
(1—RyMH)™ < (2+420)/(2+0). Since z +— (2+2x)/(2+z) is monotone increasing
for x > 0, it follows that provided

1 <2+2(50
(L—=Ry" )" = 2440’

we have the desired result. O

Henceforth, Ry will always denote Ry(n,1/64) from the above Lemma. We
next show that given V, C and C(© satisfying Hypotheses A with appropriately

59



chosen constants, we can parametrise spt||V|| as a smooth single-valued graph

over C away from B.

Lemma 3.2.5. Let C© € C and let 3, 7 € (0,1). There exists ¢ = o(C©), 3, 7)
such that if V, C and C\ satisfy Hypotheses A with ey = ey and 64 = 1/4, then
there is u € C?(Bz/4(0) Nspt||C|| \ (Bf;zl(O) x R™™1); (spt||C||)*) such that

spt|[V [ N Bsy2(0) \ (B (0) x R"™") C graph(u) C spt|| V],
and u satisfies the estimate
sup 7 tu| + sup |[Vu| < 3, (3.2.1)

where r(X) := dist(X, B) as defined at the start of the chapter.

Proof. Fix C(© € C and choose sequences V?, C¥, &; \, 0 with V*, C* and C©
satisfying Hypotheses A with e4 = ¢; and §4 = 1/4. We show that the conclusion
holds along a subsequence, which will establish the claim. Since V* are all station-
ary and have uniformly bounded mass, after passing to a subsequence we have
V¢ — V as varifolds, where V is integral and stationary in Bg, (see Corollary
2.2.23). Moreover Qy(C©) = 0, so spt||V|| C spt||C®|| and spt||V] N H £ ¢
for each i« = 1,...,4. The constancy theorem (Theorem 2.2.14) then implies
that spt||V|| = spt||C®| with constant multiplicities §; on each H;. Moreover,

convergence of mass implies the mass bound passes to the limit and so

IVIBR0) ), L
wy Ry 4

Since spt||V|| = spt||C©|| consists of 4 half-planes, the mass ratios must be a
multiple of 1/2. Hence we deduce 6; = 1 for each i. Therefore by Allard’s
Regularity Theorem (see Theorem 2.3.2, also [1] or [51]) we see that we must
get smooth convergence of the V' to C in {|z| > 7/8} N Byss. Moreover,
the C' clearly converge smoothly to C(© also, and so for all sufficiently large
i, the set spt|V|| N {|z| > 7/2} N By, is contained in the graph of a function
u € C*({|z| > 7/4} N By N spt||C|; (spt||C|)*), with u satisfying the estimate
(3.2.1). O

The next lemma is crucial. It builds on Lemma 3.2.5 by giving a much more
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precise description of the behaviour of V near B. Simon in [52] proves an analo-
gous result (cf. [52, Lemma 2.6]) by dividing B, (0), with v € (0,1), into toroidal
regions. He then argues that in any given torus either the height excess is small
and one has a graphical representation in the interior, or the excess is large, in
which case an argument using the monotonicity formula can be used to bound
the L?-norm of the distance to the axis by the height excess. Here he makes cru-
cial use of the fact that he is working in a compact multiplicity one class, which

means that small height excess implies local graphicality.

In our setting, we do not rule out higher multiplicity regions a priori, and
indeed the mass bounds are not restrictive enough to rule out multiplicity two
regions near B. Consequently we do not have the same dichotomy employed
by Simon. Indeed it is possible that there are toroidal regions with small height
excess, but in which there is not a smooth graphical representation in the interior.
In such regions, we apply Almgren’s Lipschitz approximation theorem (Theorem
2.4.3), to parametrise large parts of V' by a Lipschitz, two-valued graph. Here we
mean large in the sense that one has estimates on the measure of the symmetric
difference of the graph and V in terms of the height excess. We repeat this
argument in every toroidal region with small height excess and large mass. Since
the sets on which the graphs coincide with the varifold are not necessarily open,
it is not possible to use a unique continuation argument to piece them together
into a single two-valued function. Instead we need to sum over all of the graph
functions, which we may do while only picking up a constant factor thanks to the

cover constructed in Lemma 3.2.3.

This Lemma represents the bulk of the original contribution to the methods

of Simon and Wickramasekera present in this chapter.

Lemma 3.2.6. Let CO € C and v, 3, 7 € (0,1) with 7 < (1 —~)/10 and
B < Po where By is as defined above. Then there exists g € (0,1] depending
on CO, ~, B and 7 such that the following holds. If V, C and C© satisfy

Hypotheses A with €4 = €9 and 64 = 1/4 then there exist relatively open sets
U=UDUU? Cspt|C|| N By(0) such that

(x,y) €U = (&,y) € U forall (Z,y) € spt||C|| with |z| = |z|,
{(x,y) € spt||C|| N Bs s ’ |x| > 7'} cUW, (3.2.2)
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and U is the countable union of disks D; which can be subdivided into at most

N(n) pairwise disjoint subcollections. Further there exists a twice continuously
differentiable function u € C*(UW; (spt||C||)*) with

spt[|V[| N B, (0) 0 {(2,y) || > 7} € graph(u) C spt|[V]),

sup 14 4 sup [V < 5,
T

where v(z,y) = |z| as before. Moreover if U®) = J; D;, then for each i there is a
Lipschitz two-valued function v;: Dy — As((spt||C||)*) satisfying
il

sup 71 + sup [Vu| < 3,

there exists ¥; C D; such that graph|p.\y, (v;) C spt||V]].

Finally, defining G := graph(u) U U; graph(v;) we have the estimate

Loosavii [ A uPare Y [ ane
B\G vnB, 5/ DiNBy
<C [ dist (X spt|ClDA|V]|
By (0)
(3.2.3)

Remark 3.2.7. The set U is the ‘good set’, i.e. a subset of spt||C|| over which
V' has some form of graphical approximation. We decompose it into two pieces:
UM | the ‘really good set’, over which V can be parametrised as a smooth single-
valued graph; and U®), the ‘pretty good set’, over which large parts of V can be

parametrised as a two-valued graph.

Proof. Assume that £y has been chosen at least as small as required for the
conclusions of Lemma 3.2.5 to hold. Assume also that f < B as defined
earlier. In particular this means that we may choose ¢y sufficiently small that the
2/3-conical neighbourhoods of each of the H; that make up spt||C|| are disjoint.
We consider points (;, ¢;) € spt||C||N B, corresponding to a maximal disjoint
collection of tori of the form Tig,|2c/9(¢;). As established in Lemma 3.2.3, given
such a collection we know that (7, c/2(¢i)) is a cover of B,(0) \ B that we can
divide into N(n) pairwise disjoint subcollections. We now define U to be the
union of Tig,| ./2(¢;) Nspt||C|| over all i such that for each of the disks D\Jéi|,3c/4(Ci)v
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j=1,...,4, one of the two following cases holds.

(1) There exists u; ; € C*(D |§1\30/4(<’5> (spt||C|)*) with

spt{[V| N Uy 12(G) € graph(usy) € spt|| V]|, and

1 g
sup u[+ 0 sup [V < 5
&l b T T2

|§ B 3(‘/4(Cl) D|J§i|’3c/4(ci)

(2) There exists Lipschitz functions v, ;: D{&‘,W(g) — Ax((spt||C|))*t) and
sets B ; C D, 3,/4(Ci) such that

H(Sig)F NV (Ul 5ea(G) \ graph(vi,)

3.2.4
¢ distQ(X, spt||Cl)d[|V]], 320
|€z‘ T\s l,e

owp g+ swp (Ve <5 and
le;1,3¢/4(Gi) Die | 3e/a(G)

1
6]

graph|D|J£ 1 3e/a G\ Zi g (vij) C spt|[V].
We define U to be the union of those Dljfi\,c /2(G;) for which alternative (1) holds,
and similarly U® to be the union of those Df&"c /2(C;) for which alternative (2)
holds. Moreover we rename the disks making up U® as D;, with the correspond-
ing graph functions and ‘bad sets’ being denoted v; and XJ; respectively. We define
u € C*(UW; (spt||C||)*) by its restriction to the disks making up U™, This is
indeed well-defined and C? by unique continuation of solutions of the minimal
surface system. The claimed estimates on u and each v; follow immediately from
the construction.

If (z,y) € spt||C|| N B, NOU then (x,y) € Ti,.c/2(¢;) for some 7 with at least
one of ngi"gc 14(G;) not satisfying either (1) or (2). Hence for this i we must have
pr&

C

/ o, At (X,spt |G|V > (3.2.5)
Tig; .G

for some C' = C(C©). Indeed if this were not the case, then

2

1
[ disespichalv) <

|&i|"+2
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First note that (&;,¢;) € B*1(0) x R"~1, otherwise by virtue of Lemma 3.2.5,
we have that alternative (1) holds on each of the disks D‘j£| ¢/2(Gi). Moreover if
C' is large enough, then we can guarantee spt||V|| and spt||C|| are as close as
we like in Hausdorff distance in T, 30/4(¢;). In particular we can ensure that
dist(z, spt||C||) < (1 —7)|&]|/4 for every © € T 3¢/4(G) N spt||V]|. Applying
Lemma 3.2.4 we have that the mass ratios of UI&\ (¢;) for (&,¢) in B,(0) are
bounded by 2 + 1/2. If the mass ratios happen to be bounded by 1 + &, where
e > 0 is as in Allard’s regularity theorem (Theorem 2.3.2), then provided C
is large enough we can apply Allard’s theorem in Uéi"c(g) to conclude that in
U‘j&|,3c/4(<i) alternative (1) holds. Otherwise we know that the mass ratios are
between 1+¢ and 2+1/2, so we apply instead Almgren’s Lipschitz approximation
theorem (Theorem 2.4.3) in UIEI (¢i) to conclude that alternative (2) holds in

Uéﬂﬁc /4(Q;). The Hausdorff closeness ensures that we have accounted for all of
spt|[ V[ in Tie, .e2(Gi)-

For (&;,¢;) € B*1(0) x R*! as above, we have that |&] < 7 < (1—+)/10 and
IVI[(B1(0)) < w,(2+ 1/2). Therefore it follows from the monotonicity formula

that
(Biojg,) (0, Gi))

&l
where C = C(C©,5). The same estimate holds with C(®) in place of V, and
thus, since |Vu| < 8 on UM and |Vo;| < 8 on any D;, we have

<Ol

\%4
[ ey <ol
Bio)e;1(0,6i)

/ P2|Vuf M < CB26["2, and
UMNBygpe,(0,6:)

Z/D . 0 2|VUJ|2d’Hn < C|§Z| 5 / d||C|| < Cﬁ2lgi|n+2.
101&;| i

10\&1

Hence, for any 4 such that Ti,./2((;) N (spt||Cl| N By \ U) # 0, (3.2.5) implies

/ P2 Vul?dH" + Z/ 2|V, [2dH"
UMNBigg,;j0,¢;) D;jNBigje,|(0.6:)
<C dist?(X, spt||C|)d|[V],
T 1,¢(G)

where C' = C(C© v, B).

We now claim that if I is defined as the set of indices for which we have that
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Tie,1c/2(G) N (spt||C|| N B, \ U) # 0, then
{(‘T’y) cun B’Y dlSt((xay)7B’Y A 8U) < Lz‘} - U BQ|§1‘(07§1)
i€l

Indeed suppose that (x,y) € U N B, and that dist((z,y), B, N0U) < |z|/4. Let
(a,b) € B,NOU be such that |(a,b) — (z,y)| < |z|/4. Then we have |a| < 5|z|/4
and |z| < 4|a|/3. Moreover, for some i € I we have (a,b) € Ti¢,|/2((;), hence

(z,y) = (0,6)] < (2, y) = (a,0)] + |(a,b) — (&, G)| + 1]

o el = )l
< 1 LD g

1 (el =)l c(d =)I&]
<5 (2 v jgl) + L2 g
< OVl gy,

from which the claim evidently follows. Furthermore we observe that

Byie;(0,¢;) N Baye;(0,¢5) = 0 implies  Tig,| o(G) N Tig;1.e(¢) = 0.

The Vitali covering lemma (see Simon [51]) implies that we may choose a subset
J C I such that {By;(0,¢;) | j € J} are pairwise disjoint, and

U Baje (0,6) < U Biojg; (0, G5).

= jeJ

Defining A; := {(z,y) € UY N B, | dist((z,y), B,NOU) < |z|/4} C spt||C| N B,
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for j =1, 2, we deduce

2V QdHn / 2V 2dHn
/A1r| ul +; [ IVl

< P2V u2dH" / P2 |y 2 M
Z (/ >mBQ|§ | OQ | U| * Z (2)OB2‘§ ‘ OCz ND; | Ul|

el

< / P2Vl ?dH" + / 2|V 2d7-[">
%( UMNBojg;1(0,5) | | Z UPINByojg;(0,6)NDy Ve

<y ol asspChd|v]

jeg  7Tig1e(G
<c [ dist?(X,spt|Cl) V]
B1(0)
(3.2.6)

We now consider {(z,y) € UN B, | dist((z,y), B, N OU) > |z|/4} and seek to
prove an analogous estimate. Simon [52] uses interior estimates for solutions to
elliptic partial differential equations in his proof. We need to take a different
approach since the Lipschitz two-valued approximations are not guaranteed to
solve any equation. Instead we make a judicious choice of vector field in the
first variation formula. Our choice is motivated by the proof of the well known
tilt /height excess estimate for stationary varifolds, and is analogous to the choice
made by Krummel-Wickramasekera in [37]. Due to the slightly complex geometry
of the open set in which we wish to work, we are forced to use a number of cut-off
functions which result in many terms in the computation. However, the essence
of the argument is exactly as in the classical estimate. We begin by defining

smooth functions

b:[0,00) = [0,1], $(t)=0t<1/8, E)=1t>1/4 0 )
6:[0,00) =5 [0,1] S()=1t<1, ot)=01>2, —2<d()<
n: B1(0) = [0,1], n(z)=1for |z| <7, n=0for (1+7)/2<|z|

We also consider the four half-planes that make up spt||C|| separately, so without
loss of generality let us assume that we are working on H;. We define coordinates
(z,y) = (2, 2341,y) where & € R* z3,; € R are such that H, = {(x,y)|2 =
0, g1 > 0}. In particular notice that if p; is the orthogonal projection onto the

plane containing Hy, then pi(z,y) = (0,241, y) and (z,y) — pi(x,y) = (£,0,0).
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Finally we define
f(xa y) = dlSt(p1<l', y)7 BV N aU)’

and notice that £ is Lipschitz with constant 1. With all these in hand we define

the following vector field on R™"*¥.

B(,y) = 22y (s ) (f(x’y)) & ( il ) (£,0,0).

|~’Uk+1| 5’$k+1|

Notice that all of the cut-off functions are identically 1 on the S-conical neighbour-
hood of the set {(z,y) € UNB,|dist((x,y), B,NOU) > |z|/4}NH;, and identically
0 on the 28-conical neighbourhood of H;. Hence the region in which all the cut-
off functions are 1 contains all of the pieces of spt||V|| that are parametrised as
a graph over Hj, and none of the pieces of spt||V|| that are graphical over H; for

1 =2,...,4. We want to compute div,,;®, so we differentiate to find

D;® = 221NV O (0 fr 1 NV P + T 10D
+ T e Ditp + $k+177¢Dz¢)xj + xi+17721/’2¢25i,j7

for j < kandi¢=1,...,n+ k. By the chain rule we may further calculate
D) = ?/1/ ( § ) ( D;§ . §$k+15z‘,k+1> and
l | k1] |k |t [? 7
D= & ( 2] ) ((1 —dipr1)T; $k+1|f|5i,k+1>
' Blakl Blak+1||2] Blzks

for each i = 1,...,n+k. Note in particular that ® is C* and compactly supported
in B;(0). Denoting by p*” the projection to the approximate tangent plane Tx M

we have
divy ®(z,y) = Z Zp”xg‘QmewéﬁQxHﬂW/ < < - i1 ’};H)
i=1 j=1 |Thg1] | T g1 |
n+k k
+ 3N a2 ampd? (w0 Dim + i ka) + U0 jai e
i=1 j=1
k1l k .. (1_6k 1)1“ $k+1|j}|5'k+1
+ pz]xlsz n2¢2¢¢/< 7, -i—A (. 7, )
zzljzl ek 5|$k+1||$| 5|$k+1|3

Integrating with respect to ||V']|, invoking the first variation formula and applying
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the Cauchy-Schwarz inequality we find

k
[ttt S pd|v
=1

D=

n+k k -
< C/ |Tpp1 || 20 (Z Z(P“)Q)
i=1 j—=1

n+k ng 2 521,2 51‘ %
. (Z xi+1n2(¢’)2 (( . ) + 1;%1 ,k+1>> dHVH
i=1

Traq k41

N

n+k k -
+O/ |Tpi1| |20 (Z Z(ng)z)
i=1 =1

n+k 2
: (Z xinQ(Dm)Q + ﬁ2¢25i,k+1> d|[V|
i=1

+C/x2 12|02 e z'jz5
ralZPte | D0 ()

i=1 j=1

n+k 1— 6 2 2 2, 25i %
A (Z(¢/)2 <( ]’k+1)x] + $k+1|x| ,k+1>> d||V||

i=1 5%12c+1|f|2 5%2“

We observe that since p” is the matrix of a projection map, we have

n+k k B k B
.2 W) ="
i=1 j=1

Jj=1

Hence using the weighted Young’s inequality we find

k
[atee S pid|v
j=1

A o (DS, &
<0 [lap (starn (50 + S5} i ione e v

xi—l—l Liy1
Lo 22 2012282 1 xz+1|£|2 dlv
k+17 77D |I| (gb) 2,..2 + 2.6 || ||
B°Tj 1 L+1

We observe that ¢ = 0 unless |zp41]/8 < & < |2441]/4 and ¢’ = 0 unless
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Blagi1] < |2 < 268|zgs1|, hence we arrive at
k
2 2 1.2 42 17 A2
22 PP phd||V| < (J/ 22| V).
Jabarre Lravi<o [ 1]

Now if (p¥) denotes the matrix of the projection to Tx M wherever it exists, and
(¢¥) denotes the matrix of the projection to R™ x {0}*, then

n+k 1 n+k

zp”—n— > P =5 Y ) () - e
j=k+1 2 4,7=1
1 ntk o )
= 2 (p" =€) = §\pTXM - |7,
ij=1
and
kE ntk ) k- 1 )
> 2 07)* =3 0" = glprea —pP
i=1 j=1 i=1

Moreover we have that

n+k
VY5 = prom(Dz;) = pronle;) Zp”ez.

So therefore )

n—+k n+k ) B
VP = Zp”ez = > (p7)? = p¥.
i=1

Hence we have i .
1 ii
§’pTXM—P\2 :ZP :Z\VMCIH’Q-
i=1 ;

Let Q1 = {(x,y) € Bl ‘dlSt(pl(xay)aB’ymﬁU) 2 ’xk+1|/4}mCH1(UmB’ymHla5)7

then we have

2 M 2 ~12
vVikdvi<c | d|v
L, mal Vet <o [ japaly

<C [ dist?(X,sptClIV ]
B

Defining W; := {(z,y) € UY N B, | dist((z,y), B,NOU) > |z|/4} C spt||C| N B,
for j =1, 2, we deduce

[ rvuPanr < [t ) VVERVI < [ dist (X spt| V|
WiNnHy 04 B1
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and similarly

Z/ r2|ij|2d'H"
j WzﬂHlﬂDj

= Z (/ 2|V [PdH" + r2|v@jy2dH">
WzﬂHlﬂD \E WzﬂHlﬁE]'

sc/’dﬂwwwawu+zxmmH%&mHn

<cf - +cz/ dist?(X, spt || C[ )|V

\E\c )

SC/<MtXﬂMWWMWL
B
Of course the same estimate holds with any H; in place of H;, and so we have

/ 2|Vl d’H"JrZ/ Vi < c/ dist2(X, spt||CI)[| V|-

(3.2.7)
Finally we consider again ¢ such that Tje,| /2(¢;) N (spt||C|| N B, \ U) # 0. Recall

we denote by I the collection of such i. Then arguing as before we find

L aordivise [ dis? (0 spl G|V,

Biojg;| (0:6:) Tig1,e(Co)

for some C' = C(C©, ) and for each i € I. By definition of U, the union
of such tori contains all the pieces of spt||V|| which are not parametrised as
graphs, and each torus is contained in the corresponding ball By,((0,¢;). Hence,
employing the Vitali covering lemma as before, we find a subset J C [ such that
the collection {By¢;(0,;) | j € J} is disjoint but with

U Bae,(0,¢) C U Bioje; (0, ¢;)- (3.2.8)

iel jeJ

Then since spt||V|| \ G, where G = graph(u) U U, graph(v;), is contained in the
union of spt||V'||N7Tj¢,..(¢;) over all i € I, and the union of U;N(spt||V||\graph(w;))

over [, where U, is the open ball centred on spt||C|| whose intersection with spt||C||
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is precisely D;, combining (3.2.8), and (3.2.4) we find

Pavi<y [ P+ [, r2d||[V
o PV [ v+ Ivi

B,NU;\graph(v)

= Z/ PV + > ClaPIVIIU: N\ graph(v)
5 7 Boig;1(0:65) i

C dist?( X, spt||C|)d|| V|| (3.2.9)

j Tig;),e(Cs

+Y dist*(X, spt||C|)d[|V'|

I Tie)),e(G)

<O [ dis?(X,spt|Cl)a V]|
B

Combining (3.2.6), (3.2.7) and (3.2.9) the conclusions and (3.2.3) follow. O

3.3 [L*-estimates

In this section we use the graphical estimates of the previous section to prove the
following L*-estimates. These are analogues of Simon’s main L*-estimates (cf.
[52, Theorem 3.1]).

Theorem 3.3.1 (Main L%-estimates). Let C) € C and v, 7 € (0,1). There
exist g9 = £(C9,v,7), By = Bo(C®) € (0,1) such that the following holds. If
V, C and CO satisfy Hypotheses A with e4 = €y, 64 = 1/8 and u is as in
Lemma 8.2.6 with B = o, T = 7, then for any Z = (§,1) € By N spt||V|| with
o(|IVIl, Z2) > ©(||CY]|,0) = 2, we have

2 2
€] +/ Z Eig| +/W|XZ,,11/4d||V|| < C/Bld AV, (3.3.1a)

’7]1

ju(X) — £H(X)? 2
dH”<C/ 24|V, 3.3.1b
/{Xeanw lJal>r} | X = Z| T/ s Vi ( )
where £-(x,y) is the orthogonal projection of (€,0) onto (TxC)*, C depends only
on v and C and we used the notation d(X) := dist(X, spt||C||) and dz(X) :=
dist(X, spt||T24C||).

We will break down the proof of the above statement into multiple interme-
diate lemmas, but before doing so we state the following important corollary to

Theorem 3.3.1. It implies that, provided there is an abundance of good density
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points, the height excess can’t concentrate in small cylindrical neighbourhoods of
B.

Corollary 3.3.2. Let C € C, and 6 € (0,1/8). There is g9 = £0(C©) such
that if V, C and C) satisfy Hypotheses A with €4 = min{ey, 8} and 54 = 1/8,

and

(OF % B! € Bu((X |(IV], X) > (|C),0)=2)),  (332)
then 2
/B “adv] < c/ 2d||V|, (3.3.3)
1/2 T's

where C = C(C©), rs := max{|z|,d}.

Remark 3.3.3. Notice that (3.3.3) implies

/ PV <o [ aav,

(ByT' xR =1)NB, 5 By

with C independent of . Therefore the part of spt||V||NBy 2 close to B contributes
little to [z, d*d||V|| if the hypotheses of Corollary 3.3.2 hold with & small enough
(which depends only on C©)).

Proof of Corollary 3.3.2. Let z € B1/z (0). Then by (3.3.2) we know that there
exists Z with O(||V|,Z) > 2 and |Z — (0, z)| < 26. From (3.3.1a) of Theorem
3.3.1 we know

1 d?
o &2d||V <C/ —dV<C’/d2dV,
ot fy o, PV < = zmdlvise [ @)

for any p € (26,1/4). We can cover By /s X (B];/J;l x R"1) by N < C(n, k)p~ =V
balls B,(0, z;) with |z;] < 1/2 for each j, and such that {B,(0, z;)} splits into at
most C'(n, k) pairwise disjoint subcollections. Therefore denoting by J the index

set of the collection {B,(0, z;)} it follows that for all p € (26,1/4)

1
dev< —/ d2dv<0/d2dv.
il iy VIS E o5 [ EAVI <O [ v
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Multiplying by p~3/* we have

— Pd|V | < / d*d|[V
75 oy sty PV S 5 [ &IV

Integrating this over (20, 1/4) with respect to p we find

/4 1
/2 e d2d|]V||dp<C(41/4 (25)1/4) /B 2d||V].

k+1
d Bl/ZH(Bp/Q xR7— 1

The left hand side equals

1/4
L avsmandedlVi= [ 4 L Sadeiv

1 1
=2/, ¢ — 5 | alv
By <(21”5)1/2 41/2> H H>

where 75 = max{|z|,d}. Rearranging we have exactly the desired estimate

d?
[, Spaviisce [ @i,
Bij2 15

]

We now embark on the proof of Theorem 3.3.1. The first step is to prove
an analogue of [52, Lemma 3.4]. The proof is completely analogous to Simon’s,
the only difference being the application of Lemma 3.2.6 as we have to deal with
regions of the support of V' that have been parametrised as a two-valued graph.

This does not substantially alter the argument however.

Lemma 3.3.4. Let C € C and o, v € (0,1). There exists ¢g = £9(C?,7) and
Bo = Bo(CO) > 0 such that if V, C and C©) satisfy Hypotheses A with €4 = €
and 54 = 1/4, and if ©(||V],0) > O(]|[C]|,0) = 2, then

X4 :
[ VI [ Y e PAIVI+ [ v
i Brj=1 (3.3.4)

<C [ dist’(X.sptlCdV
By
where C = C(C, a,7), R(z,y) = /|2 + |y|>.
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Proof. By the monotonicity formula, we know that the mass ratios satisfy

d |VI|(B d X2

dp p»  dpJs, R

Since O(||V||,0) > ©(||C?||,0) we find

jp<||vu<Bp> ~IcO(B,)
e (uvuin) el <Bp>> e (nvuin) ~jc® Q(B»)
p p p\ P p

o [ X
> [ IV,

for almost every p € (0,1]. Indeed the second term is non-negative by the mono-
tonicity formula and the fact that C© is a cone. Moreover, in the first term we
have p~"||CO|(B,) = w,O(]|C?|,0) < w,O(||V]],0), and so we recover precisely

the remainder term from the usual monotonicity formula.
Now let 1: R — [0,1] be C? with ¢(t) = 1 for t < (1 +~)/2, and ¥(t) = 0

for t > (3 +7)/4, with ¢'(t) < 0. We multiply both sides by 1*(p) and integrate
on [0,1] to get

" (r)rnt |XL|2dVd<12 < (vis COY(B,))d
|t [ diviar < e (VI8 - [CV1(B,) dr
= [ wAmavii- [ v mayc.
Bl Bl
Estimating the left hand side from below we find

(141)/2 XL
2RdV—/ 2(R)d||C© >/ nfl/ dIVld
[ wmat - [ vmaie® > [T e [ B Ry

-1 102
Y1 =) / | X

> V.

= 2 5, gz vl

(3.3.5)

We now use [52, Equation 2.5], which reads

1 n—1
/ (1 > |e¢+l+z.|2) SRV

i=1

(3.3.6)

ij=1

k+1 o
g/ — Y gUat Dy? + 2|(x, 0) 2D, | V.
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This is a simple consequence of stationarity, and follows from making a particular
choice of vector field in the first variation formula. We let v = ¢(R), then
D, = 2" /R, and D, = y")'/R, so

1 n—1
[, (145 S letua) w2y
Bi i=1

- (3.3.7)
< /B —2p(R)Y(R)R™ S g aia? +2|(z, 0 2(¢/(R))2d|[ V).
1 Q=1
Now
k+1 o
S gl = |, 007 = 12 — (5,00,
i,7=1

so from (3.3.7) we have

[, (143 ke
< [ 2R MR (R) + 2 (0, 0)* PR 0(R)(R) + (& (R))d|V |

<C [ @O HPavi—2 [ PR @R RV,
(3.3.8)

where C'= C(v) and 4 = (3+)/4. Assume that ¢ is small enough that we may
apply Lemma 3.2.6 with § = min{fy, fcw}, ¥ =% and 7 = (1 — 4)/10. Notice
that if P, and @, denote the orthogonal projections onto (1{,,) M)+ and
(T(x 4 C)* respectively, then

u(@',y) + (Play) — Q) (7,0) = Py (7,0) + Q) (2, y) — Qar (0, 0)
= (l’, 0)L + Q(x/,y) (07 y)
= (z,0)",

for any (z,y) = (2/,y) + u(z’,y) € graph(u) C spt||V]|. Since |Vu| < 5 <1 we
also have

1Py — Q| < C(n, k)| Vu(a',y)l,

for such (z,y). The same estimates hold for H"-almost every (z,y) such that
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(z,y) = (2, y) + vj(a’,y) € graph(v,;) C spt||V|| for some j. Hence

[ @0 v =2 [ PR R (R

5

S |“|2+7°2|W|2d7{"+20/ sl Ve Pane
UnB
2 _ .
+C/%\GT AVi=2 [, PRGR RV,
(3.3.9)

where the part of the final integral over the non-graphical part has been absorbed
into the penultimate integral, using the fact that we have a lower bound on
R where ¢ # 0. Now C, consists of two lines crossing at the origin, so for
¢ € C*(0,00) with ¢ = const in a neighbourhood of the origin, and ¢ = 0

outside a bounded set, we have

/¢2 d||COH—4/ ¢ (r)dr = 4 [¢*(r) —8/ ré(r
— 2 /w (r)d||Col.

We use this observation with ¢(r) = ¢(R) for y fixed and R = /72 + |y|?. Then
¢'(r) = rd'(R)/R, so

[ BAIC] = =2 [ 1R (R (R)|Col.

Integrating with respect to y we recover

[, ARIC] = =2 [ PRGERRAIC), (3.3.10)

From the area formula we know that

2 p—1 / n __ 2 >—1 / n
/graph(u)ﬂBlr k ¢(RW (R)dH */ 7ﬂuRu (Ru)w (Ru)\/gd,}‘[ )

U(l)ﬂBl

where /g = 14+ E, with 0 < E < C|Vu* < C(r?|ul® + |Vul*), and where
= |z +|u(z,y)?, R2 = |z|*+|u(z, y)|*+|y|?. Since ¢ is monotone decreasing,
and R < R,, it follows

—2 TiRglw(Rw@b,(RU)\/gdHn

UMNB,
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< -2 (7 + uP) R O(R) (Ru) GaH"

UMnNB,

— 9 P2RV(R)Y (R)AH" — 2 / r2R-1(R)Y (R) EAH"
UvMnp, vMnB,;

—2 0 R R) (R — () aan!

—9 /U o, B ORI (R)AH

Therefore, using the fact that |[¢/(R,) —¢'(R)| < Clul?, Ju|?* < r? and r < R, and

the bound on F we have

2/ RSO (R (Ru)/gd A

UMNBy
< — 2 p—1 / n 9 9 9 n
= 2/U(1>m31r R™Y(R)Y' (R)dH +C/U<1>QB& ul? 4 72| Vu|?dH

(3.3.11)
Arguing completely analogously, it follows that
=2 [ ROV(R, (R,
DjﬁBl 7 J
< -2 P2RYp(R)Y (R)AH" + C/ ;2 + 72|V [2dH.
D;NB1 D;NB5
(3.3.12)

Hence from (3.3.10), (3.3.9), (3.3.11) and (3.3.12) it follows that

1 n—1

5 LS lets | emavi+ [ v mav - [ vrjcy

2B\ ;o B B
< 2 42 Tuldyn C/ 12 42Ty [2dH"
_C/U(lmBJu] + 2| Vul2dH +; ) o Jal? + 7290 P
+C/ P2d|[V]|.

Bs\G

Applying the estimate (3.2.3) from Lemma 3.2.6 and using (3.3.5) we find

T = 2
d / |1°d <C/th,thV.3.3.13
fy, s VI [, SletagPavi <€ [ asexspehalvl. (31
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Next we establish the bound on

dist?(X, spt||C||)
[ 1€ gy

Rn+27a

Note that d: R"** — R, X s dist(X,spt|/C||) is homogeneous degree 1 with
Lipschitz constant 1. Moreover, if X = (z,y) then d is independent of the y

variable, and d? is C! in the x variable in the region
Kuy o= {(,9) € (R {0)) x R | dist( (), spt[C]) < ol

Hence it easily follows that we may construct d: R"** — R with Lipschitz con-
stant C, that is homogeneous degree 1, with d =d on K.,, such that d?is C!

everywhere and

where C' = C(C®). We now define

C2 JQ
DX) = T X,

where ¢ € C°(R™™*) satisfies ( = 1 on B2, ( = 0 outside of B; and
VR (| < €, where C' = C(y). Since d?/R? is C" and homogeneous degree 0

(i.e. radially constant) away from B, it follows that

¥ —_— Cz2 B n-‘rkaD d2 B
j:

Furthermore, since Lip(d) < C' and d < CR we have

5 2C
RHE -1
V(R d)]gf.
Also, divy, X =n, [VMR| < |[VE""R| < 1, so
_ < 1 d>_ ¢ d_,d
divaB(X) = il i) X g2 Ggm® oy
var®(X) Rn—o R2n+Rn—a R2 (VTG + Rn—a RV R
@ (a —n)
2 M
+gﬁRn+mv R-X
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1 n+k ~2

d, . d
Rn a Z Xl ( 2R(gw - 5 )D R + 2<R2gZJDJC>

i,7=1
C2 d2 |XT|2
+ T 2 n+ (a—n) )

By the first variation formula and Hélder’s inequality it follows that

, &
o[ ¢V
CZ 2 1/2 N 1/2
<o ([ V) ([ e ran)

d | d )
ve(f Rn”pnwo ([ eIV claivi

1
vo [ pS Pl

Using the weighted Young’s inequality we find

[t awvizef S praviec [ o wrcpa)

B, Rn+27a — B Rn+27oz By Rn—a ’
(3.3.14)

where C' = C(C?, «). Applying (3.3.13) with ~ replaced by (1 4 7)/2 we have

i|2

X2Vl </ d||V| gc/ 2d|V|.
[, peaicrami< [ Bbapy<co [ e

Moreover, |VM(| # 0 implies that R > (1 +)/2 > 1/2, and |[VM(| < C, so it

follows

d?
S VARV < C [ dalv)
[, el VYAV <o [ aagv

Plugging these estimates back into (3.3.14) we obtain

d?
v < C/ 24|V, 3.3.15
[, madlVi <0 [ &dv) (3:3.15)
which concludes the proof. O]

The second ingredient in the proof of Theorem 3.3.1 is an analogue of [52
Lemma 3.9].
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Lemma 3.3.5. Let C(O) € C. There exists g = £o(C®) > 0 such that if V,
C and CO satisfy Hypotheses A with €4 = o and 54 = 1/8, then for Z €
singV' N By with O(||V||, Z) > ©(||C?]],0) = 2 we have

distZ(Z,B)+/ d?zdnvugc/ 2d| V|, (3.3.16)
Bl Bl

where d(X) := dist(X,spt||C||) and dz(X) = dist(X,spt||TzxC|) and C =
C(CO, ).

Proof. We assume throughout that Z = ({,7n) € singV’ N Bs/4, and that V, C
and C© satisfy Hypotheses A with €4 = gy and §4 = 1/8, where gy > 0 is to be
chosen. Notice first of all that by the triangle inequality we have

|d(X) — dz(X)] < [¢], (3.3.17)

and hence
[ &avi<2 [ @)+ cieb, (3.3.18)
Bl Bl

where C' = C(C®). Thus to prove (3.3.16), it suffices to show that
€2 = dist(Z, B) < c/ 2d|V|.
By

By Lemma 3.2.5 we know that |£] = dist(X, {0} x R""!) < 7 with 7(g9, C¥) — 0
as g9 \¢ 0. Therefore there exists § = 0(g9) — 0 as €9 — 0 such that if X =
(z,y) € W :=spt||V] N (B1(0) \ (B5T(0) x R* 1)), then

dist(X, spt|| Tz4C|) = (2, y) — (o', y) — €71, (3.3.19)

where 2/ = pgo () is the nearest point projection of x onto C(©), and ¢+ is the
orthogonal projection of (§,0) onto (T(,70)C)*. Indeed X € W, if 6 is chosen
appropriately, implies that the nearest of the four half-planes making up C to X
and X + Z are the same. By the triangle inequality applied to (3.3.19) we have

1€t < dy(X) +d(X). (3.3.20)
We now claim that there is d; = d;(C®)) > 0 and, given p € (0,1/4), a constant

g0 = o(p, C?) > 0 such that if V, C and C© satisfy Hypotheses A with e4 = &
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and 04 = 1/4, we have
VI ({X € BJ(2)nW | difal < [a*]}) > 6p", (3.3.21)

for any a € R"™*. Indeed, if this were not the case, then for every 6; > 0, there
would exist p € (0,1/4) such that for each i > 1 there are corresponding V*, C
such that V?, C* and C© satisfy Hypotheses A with ¢4 = 1/i and 64 = 1/4, as

well as sequences Z; € singV? and a; € S* such that

Vi ({X € B)(Z:)n Wi

01 < laf|}) < i,

where W; = spt||[V?[| N (B1(0) \ (B5™(0) x R"!)) with §; — 0. Passing to a
subsequence we may assume that V' — C© Z, — Z € B with |Z| < 3/4 and
a; — a € S* so that

ICON ({X € B,(2) |61 < la*[}) < d1p"™ (3.3.22)

Therefore if (3.3.21) were not true, then for all §; > 0 there exist p > 0, Z € B
and a € S* such that (3.3.22) holds. Translating and rescaling we can assume
that p = 1, Z = 0, since C© is translation invariant along B. Thus for each

j > 1 we can choose d; = 1/7, then there exist corresponding a; € S* such that
ICON ({x € Bi(0) | " < laf[}) <"

Passing again to a subsequence we can assume that a; — a € S* with a* = 0
|C@||-almost everywhere in B;. This however is a contradiction as it implies

that C© is translation invariant in the a direction.

Thus we fix po € (0,1/8) and let o(py, C(?) be the corresponding &, arising
from the above discussion. By applying (3.3.21) we find

nicl2 <« C/ €L 2d VI,
per<cf ey
Combining this with (3.3.20) we therefore have

n 2<C/ 2d|V +C/ 2|V,
P <C [ gawi+e [ eav)
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We now apply Lemma 3.3.4 with a = 1/2 to nz1/4#V and C. Provided ¢ is
chosen sufficiently small, Lemma 3.2.4 and (3.3.17) combined with the fact that
|€] < 7(ep) imply that the assumptions of Lemma 3.3.4 are satisfied. We therefore
have that

e
pg+3/2 By (

PO

avi<c [ @&avi<c | @i+
Z) B1,4(2) B

Note in particular that C' = C(C®) is independent of py. Thus

5 < C [ ddlvi+ Oy,

So by choosing pg suitably small (e.g. such that C’pg/ > <1/2), we find
gp<cf aa,
By

provided g = £¢(C?) is sufficiently small. O
Combining Lemmas 3.3.4 and 3.3.5 we may now prove Theorem 3.3.1.

Proof of Theorem 3.8.1. Let Z = (&,n) € spt||V|| N Bsy with O(||V]|,2) > 2.
By Lemma 3.3.5 we have

€2 < C/B 2d|V|. (3.3.23)

Therefore, if gy is small enough, we may apply Lemma 3.3.4 to 1z,/44V with
a =1/4, v =1/2 and deduce from the triangle inequality that

&
—dV<C/ d5d[|V <C/ Ad|V].  (3.3.24
[ o gmmdVI<C [ dawi<c [ eavi. @a)

This of course implies

dQZ
— < __J|IV] < C/ d?d||V]|. 3.3.25
/Bl/8<z>|>r—2|n—1/4 vi<c | davi (3.3.25)

Because d < dz + [£], we have

d2
—mdlvi<c [ dd).
Joy iy =z VIS C [ v
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Since we have the estimate | X — Z|~(=1/4 < 8"=1/4 on spt||V|| \ Bys(2), it
readily follows that

d2
———d < / d*d .
[, = grmndvi<c [ aav

The estimates on the remaining terms appearing on the left hand side of inequality
(3.3.1a) follow directly from Lemmas 3.3.4 and 3.3.5.

To establish (3.3.1b) we need only observe that on the set U, := {X = (z,y) €
spt|C|| N B, | |z| > 7}, we have dz(X + u(X)) = [u(X) — &(X)], which follows
from Lemma 3.2.6. Hence applying (3.3.24) we have

u(X) — £H(X)]? ,
dH" < c/ 2d|V].
/UTﬂBl/s(Z) X — Z|n 7/ Hi<C | dz V]

As before we can bound |X — Z|™""7/* on the set U, \ By/s(Z) to establish
(3.3.1b). 0

3.4 Blow-ups

In this section we construct blow-ups, which represent solutions of the linearised
problem. The first step is to show an abundance of points with density at least
2, which is required to apply the estimates of Corollary 3.3.2 and deduce that
excess does not concentrate near the axis. Recall Definition 3.1.6 from Section
3.1.1. Wesay V' € V if V has no triple junction singularities in B;(0)\ B, and the
orthogonal projection of singV’ N B; to B has full H" '-measure. We can show
that members of the class V necessarily have an abundance of singularities with

density at least 2 near the axis. We refer to such points as ‘good density points’.

Lemma 3.4.1. Let § > 0 and C©) € C. There is e = ¢(CY ) > 0 such that if
V €V, C and CO satisfy Hypotheses A with ey = ¢ and 64 = 1/4 then

Bo{(z,y) [yl <1} € Bs({X [O([[V], X) = 2}). (3.4.1)

Proof. By Lemma 3.2.5 we may choose ¢ small enough depending on C® and
d such that (spt||V|| N Bs2) \ Us decomposes into smooth single-valued graphs
over C. Hence, by (M2), it follows that for H" !-almost every y € B""* there
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exists (z,y) € singl’ N By such that |z| < J. By stratification of the singular set
(Lemma 2.3.6), H" '-almost every such (z,y) has a tangent cone that is either
a multiplicity 2 or higher plane, or a tangent cone with a one-dimensional cross
section. In the former case we trivially have ©(||V]|, X) > 2. In the latter case,
the one-dimensional cross section of this cone must consist of three or more half-
lines meeting at a common point. We need only rule out the possibility that it
consists of three half lines. In this case Simon [52] tells us that in a small ball
centred on X, the varifold consists of three smooth sheets coming together along
a common boundary, i.e. a triple junction. If  # 0 then this is an immediate
contradiction of (M1). Otherwise, since spt||V|| consists of three smooth sheets
in a neighbourhood of z, and four smooth sheets away from the axis, there must
exist another singularity (Z,y) with £ # 0 to which we may apply the above

reasoning. O

3.4.1 Constructing blow-ups

Let CO € C, g; N\, 0 and suppose that V7 € V, C/ € C and CO satisfy
Hypotheses A with e4 =¢; and d4 = 1/16. Thus we assert the following.

(1;) Each V7 satisfies the mass bound

J
[V [(Bay(0) _ o, 1
bW, 16

(2;) The height excess Ey;(C?) of V7 relative to C’, which we denote by Ej,

satisfies
E2 = F2,(C7) = /B dist?(X, spt[| C7)d|[ V7| < Q%,(C7) < &2
(3;) C’ is Hausdorff close to C®| that is
disty(spt||C?|| N By, spt||C?Y| N By) < ¢

(4;) V7 has no triple junction singularities in B;(0) \ B, and the orthogonal
projection of singV? N B; to B has full H" !-measure.

We further assume that ©(||[V7]|,0) > 2 for each j. Notice that if this weren’t
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the case, then Lemma 3.4.1 implies the existence of Z; € spt||V7]| such that
O(||V7,Z;) > 2 and Z; — 0. By translating Z; to the origin, and possibly
rescaling slightly to ensure that the translation remains in V, we can ensure the
existence of a good density point at the origin. Furthermore, since V7, C’/ and
C© satisfy Hypotheses A with e4 = ¢; and 4 = 1/16, we can ensure the modified
sequences still satisfies Hypotheses A with €4 = &;, and 64 = 1/8, where £; \, 0.
This means we can still apply the results of Section 3.3 in the remainder of the

construction.

We now pick sequences d; and 7; going to 0 sufficiently slowly (depending on
g;) that we may apply Lemma 3.4.1 with d, replacing ¢ in the statement, and
Lemma 3.2.6 and Theorem 3.3.1 with 7; replacing 7 in the respective statements.

Thus it follows, for sufficiently large j, that

(A;) From Lemma 3.4.1 we know that for every Y = (0,y) € BN B; we have
Bs,(0.y) n{Z [o(|V7],2) = 2} # 0.
Consequently Corollary 3.3.2 says that for every o € [d;,1/4) we have

/' dist3(X, spt||C7||)d|| V7| < Co'/2E2. (3.4.2)
(BEHIxRP=1)NB /5 7

(Bj) Lemma 3.2.5 implies that V7 admits a graphical decomposition of the form
VIL(Bs2(0) N {r > 73}) = [graph(u) | (Bs2(0) N {r > 7;}),

where u; € C*(spt||C7|| N {r > 7;/2} N By; (spt]|C’||)*) is a smooth

solution of the minimal surface system.

(C;) By Lemma 3.3.5, for each point Z; = (&,n;) € spt||[V7] N B3y with
O(||[V7]], Z;) > 2 we have

&;|* = dist*(Z, B) < CE}. (3.4.3)

(D;) For each p € (0,1/4] there is a J(p) such that for each j > J, and any
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Z € spt||[V7]| N Bs/s we have, by Lemma 3.3.4 applied to 17,4V, implies

[ u,(X) — €0
Uy Bya(7) X — 2]

H < /B BVl (344)

This is established by arguing as in the proof of Theorem 3.3.1.

We now define the functions

-1
vj = Ej Uj.

For each compact K C B \ B, it follows from Lemma 3.2.6 and standard elliptic
estimates that

sup |V'v,| < C, i=0,1,2,3, (3.4.5)
KNCJ

for j sufficiently large depending on K. Moreover since we have that C’ € C and
disty (spt]|C?|| N By, spt||CO|| N By) < ; we know

spt||C?|| N Bsjz C graph(y;)

for some ¢; € C%(spt||[CO|| N Bsja; (spt[|C@|)L) that is linear on each H"
and with [[¢;]|c2 < Ce; — 0. This combined with (3.4.5) implies that, up to
extracting a subsequence, v;(z + 9;(z)) converges in C2,. on spt||C|| N B, to a
limit function v € C?(spt||CO|| N {r > 0} N By; (spt||CO)1). Moreover, (3.4.2)
implies that for o € (0,1/4), we have

/ []2dH" < Cot/?,
spt||CO) |n{0<r<o}NBy 2

from which it follows that convergence is also strong in L? for every o € (0,1) on
the set spt||C@| N {r > 0} N B,(0). We let Q := spt||CO|| N {r >0} N By(0) for

brevity, and we make the following definition.

Definition 3.4.2 (Blow-up). Corresponding to C), and sequences {C’} C C,
{Vi} C V, and {&;} such that V7, C’ and CO satisfy Hypotheses A with 4 =
gj and 64 = 1/16, we call any v € L*(2; (spt||CO|)*) N C=(€; (spt||CO])4)
constructed in this way a blow-up of the sequence V7 off C© relative to C7. We
denote the class of all blow-ups off C© by B(CO),
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3.4.2 Properties of blow-ups

In this section we analyse the class B(C®) and prove basic fundamental prop-

erties of the members which will in turn imply strong regularity properties.

Lemma 3.4.3 (Properties of blow-ups). Given C € C, any v € B(C©) satis-
fies the following properties.

(B1) v € L*(Q; (spt COY)H) N C(€; (spt]|CO))F).
(B2) Av =0 on Q.
(B3) For eachY € BN Bs16(0), there is k(Y) € B satisfying £(0) = 0, [x(Y)]? <

C Jonp, , [v2dH", for some constant C = C(C)), and moreover for each
p € (0,1/8] we have the estimate

o(X) = K- ()P ¢ o
/Bp/Q(Y)mQ | X — Y|nt3/2 H' = 32 |5 (vyna [v(X) =k~ (Y)]"dH
(3.4.6)

Proof. Properties (81) and (B82) follow directly from the construction.

To see (B3), we first let v € B(CO®) and suppose that v is a blow-up of
V7 off CO relative to C?7. Fix Y € BN Bs,16(0) and choose a sequence Z; €
spt||V7]| N Bss(0) with ©(||V7], Z;) > 2 and Z; — Y. The existence of such a
sequence is evidently guaranteed by (A;). Then from (3.4.4) it follows that

u; (X) = & (X)) C .
d "<7/ dy 4[|V 3.4.7
/UijBp/Q(zj) X — Z|n 32 H" < 872 | 1) % V7] (3.4.7)

Notice that (C;) implies, that after possibly passing to a subsequence which we
do not relabel, there is x(Y') € B such that

lim E77(&5,0) = w(Y).
In fact, by applying Lemma 3.3.5 to 7g,1/24 V7 we conclude that

1617 < C'/B dist? (X, spt||C7|)d || V7.
1/2
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On dividing both sides by EJ2 and letting j — oo we find

(V)" < [o]*dH".
QNB, s
Moreover, dividing both sides of (3.4.7) by E?, letting j — oo and invoking
(3.4.2) we establish (3.4.6). Notice that (3.4.6) implies that x(Y") depends only
on Y and not on the sequence Z; used to construct it, justifying our notation.
Finally observe that if Y = 0, we can choose the sequence Z; = 0 from which it
evidently follows that x(0) = 0. O

3.4.3 Regularity of blow-ups

In this section we prove that blow-ups are globally C'! up to the axis, and hence
boundary Schauder theory will give us excess decay for blow-ups. We first show
that blow-ups are C%%(§). The argument is based on Campanato style estimates,

used in a similar fashion by Wickramasekera in [64]

Lemma 3.4.4. Let v € B(C?). Then v € C*(Bs;16 N {r > 0}; (spt||C?V||)*)
for some a = a(C©)) € (0,1) and the following estimate holds

X) —o(Y)?
sup |02+ sup [v(X) U(Qa)| <C </ ’U|2d%n>‘ (3.4.8)
B /1610 x.veBs a1 X Y] ONB, 3
XAY

Proof. Let v € B(C®) and let Y € BN Bs/i6. Then property (B3) of Lemma
3.4.3 and (3.4.6) tell us that for any p € (0,1/8]

[0(X) = 5(Y)P c 2
dH" < / X) — k(Y)]PdH™, (3.4.9
/Qme/Q(Y) | X — Y |nt3/2 H = 32 Jp (vyne [v(X) — &(Y)["dH ( )
and that
k(Y[ <C v[2dH™,

By jon{r>0}

where C' = C(C©). As observed previously, it follows immediately from (3.4.9)
that x(Y") is unique and depends only on the point Y and not on the sequence of
singular points Z; used to construct it. Therefore we may declare v(Y') := x(Y).
With this choice of boundary values along the axis, we seek to prove that v is
C%. Now, the estimate (3.4.9) implies that for a fixed constant C' = C(C©)),
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and for 0 < o < p/2 < 1/32 we have

3/2
1 1
— v(X) —v(Y)PdH" < C <‘7> f/ [v(X) —v(Y)[PdH™
o™ JB,(Y)NQ P P JB,(Y)NQ

(3.4.10)
Let Z € Bs/i6N{r > 0}, p € (0,16] and let Y € B be the unique point such that
|Z — Y| =dist(Z, B). We take v € (0,1/16] to be determined, and suppose that
dist(Z, B) < vp, then

1
(vp)"

2 n
<|—— / v —o(Y)PdH"
(’YP + ’Z - Y|> Byprz—y|(Y)NQ | ( )l

/ o — o(Y)2dH"
By (2)NQ

3/2
W+ 12— Y‘) 1 / 2
< 2"C v—v(Y)|*dH"
<p— Z-Y1) G-1Z2=V o, sorpa” ")
3/2
2 1
<4"C (PY) —/ lv —v(Y)|?dH",
-y P By (2)n0

where we applied (3.4.10) with o replaced by vp 4+ |Z — Y| and p replaced by
p—|Z —Y|. We now choose v = v(C®) € (0,1/16] to be such that

3/2
2
4"C <17> < 1/4,

then

1
(yp)"

1

—o(Y)2d "<7/ (Y RAH™ 3.4.11
/erv WIPART < [ oo (V)PARY (3400)

for any Z € Bs;i6 such that |Z — Y| = dist(Z, B) < vyp. Conversely, if yp <
dist(Z, B), then since v is harmonic in {2, standard elliptic estimates imply that
for all o € (0,1/2] and b € (spt]|C@||)* the following estimate holds

Co?

1 /
(vp)™ JB,p(2)nc©®

_ 2 n <
(ovp)" /Bﬂp(z)mcw) [v—o(Z)PdA" <

lv —b)*dH". (3.4.12)

Now fix Z € Bs;16M {2 and let j* be such that

T < dist(Z, B) <47
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Then with Y € B such that |Z — Y| = dist(Z, B) we have from (3.4.12) that

Co?

: J,
(V)" JB e (2)n0

— —(Z2)PAH" <
E /me(zmw o(Z)[2aH" <

lv — v(Y)|2dH".

(3.4.13)
Furthermore, if j* > 1 then by iterating (3.4.11) we have

1 1
, v—vY2d7-[”<,7/ v —o(Y)[PdH"
(9 /BW(Z)rml (¥) = 4y Bwj,l(Z)ﬂQ| ¥l

1
: —v(Y)|PdH"
4i—1~n /197(2)09 [v=2(¥)l

(3.4.14)

<

for each j = 1,...,7% On the other hand, letting j = j* in (3.4.14) and choosing
o =1/2in (3.4.13) we get

+f o — o(Y)2dH"
B jei1,,(2)00

C
< — / v —v(Y)]?
< Gy me(zmﬂ' (Y
+C/ v — u(Y)[2dH"
() JB e (200
< S ey
(73 ) B'\/j*(z)ﬂﬂ

C
< — — (V) [PAH",
<5 Ly 0

where C = C(C®,4). Therefore using (3.4.14) and the triangle inequality we

recover

1
()"

C
—u(2)Pan < 5 —o(V)PAH" (3415
Jocoralv = @FAH < g [ o= oPanT (3.415)

for j = 1,...,7* and where C = C(C® 4). Now let p € (0,7/2]. Then if
2p < 47" we may write p = 099 ! for some o € (0,1/2], and so by (3.4.13)
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and the bound on |x(Y)|* we have

1 Co?

— v —v(Z)|PdH" < (.7*

P JIB,(Z)ne 4J
Co?

< — v|*dH".
= 4l /Bl/Q(Z)ﬂQ‘ |

Alternatively, there is a j € {1,...,j*} such that v7/™! < 2p < 7. Then from
(3.4.15)

/ v — o(Y)[PdH"
B(Z)NQ

1 C
— —(Z)PAH < / —o(Y)PdH"
pm /Bp(Z)ﬂQ [v—v(Z2)["dH ~ 4371 B (z)ne [v—o(Y)[ dH

¢ 2
. dH".
T 4itl /Bl/Q(Z)OQ i

Observing that (0270"*D)2 < p? in the former case, and 4! < p?* in the
latter case for some appropriately chosen o = a(C(O)) we have, for any given
Z € Bs;16 Nspt||CO| and p € (0,7/2], the estimate

A

1
— v —v(Z)PdH" < Cp*® [v>dH". (3.4.16)
pP" JIB(2)nQ By /2N

From here, Hélder continuity of v in Bs/16 N €2 follows easily. Indeed given Z,
Zy € Bsji6NQ let p = |Zy — Zy|. 1If 2p < 7/2, then noting that both B,(Z,),
Bp(ZQ) C ng(Zl) N ng(Zg) we obtain

C
Z—Z2<—/ —0(Z)|? + |v = v(Zy)|PdH"
WZ) @< S G2 o= (Z)
C 2 n C 2 n
<= o= v(Z) e+ v — 0(Z)PdH
P JBoy(21)00) P JBoy(22)n0)
<Cp* o] *dH".
By /20
Henee 0(Z1) = o(Z)?
U{41) — U\ 42 2 n
<C v|*dH".
|Zl_ZQ|2a Bl/QﬁQ| |

Bearing in mind that v(0) = 0, the conclusions of the lemma now follow easily

from here. O

Next we show that we can improve the regularity to C? with C!-estimates
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controlled by excess.

Theorem 3.4.5. Let v € B(CO). Then v € C2(QN Byyy; (spt||CO)L) and we

have the estimate

Dv(X) — Dvu(Y)|?
sup |Dv|* +  sup | Du(X) 1)2( ) <C lv2dH™.  (3.4.17)
By 400 X,YEBy 4N X =Y B1/2n92
XAY

Proof. Fix some v € B(C®). By definition there is a sequence £; \, 0 such
that v is the blow-up of some sequence V7 off C© with respect to C/. Choose
¢ = ((r,y) smooth such that ((r,y) = 0 if r* + |y|*> > 3/8. In addition, we
also suppose that 9¢/9dr = 0 in a neighbourhood of {r = 0}, which is to say we

assume the existence of some 7 > 0 such that
D,((]x],y) =0, for x| <27, ¢=1,...,k+ 1. (3.4.18)

For eacha =1,...,n—1and ¢ = 1,...,k + 1 the first variation formula with

P := ¢;(,, where e;(, := ¢;0( /0y, applied along the sequence V7 gives
[, VAV = [ e VMGV =0
B1 B

We let Uj := By \ (B! x R"1) Nspt||C7|| where 7; N\, 0 sufficiently slowly that
spt[|[ V7] \ (BEH x R™HF) is single-valued graph of some C* function u; over C);
note that such a sequence 7; is guaranteed to exist by Lemma 3.2.6. We further
define G; := graph(u;|v;np, ,). Finally, we define (gép(X)) to be the matrix of
the orthogonal projection onto T'x M7, which exists at almost every point. We

have

Lo 19 9 v
1/2\Gj

n+k
B1/2\Cs p;g]( Dol IV (3.4.19)
n—1
= 52 _ 3, 1+k+p X D oCo d Vj ’
s, |2 Ounsien = 9 TN Dy AV

where we used the fact that D;(, = 0 for each j = 1,...,k + 1 and that for
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t=1,...,k+ 1 we have 0; 14,4, = 0 for each p. Thus

Jy o 19 VGV
1/2\Gj
1/2
3 2] D |d|[V
B1/2\G; (p_ ‘€1+k+p‘> | D[ V7]

1/2
1/2
< sup [DG| ([IV7[[(Bij2 \ Gy) ( Z et skep] 2dHVJH)

1/2 B1/2\Gj p=1

< Csup |DG|VTE;

By

where we used the fact that V7 converge in mass to C*) and Theorem 3.3.1.

Therefore for all j sufficiently large we have

/B \G (VM2 - VM ||V < Csup | DG VTE;. (3.4.20)
1/2\Gj

By

W

)
up the cross section of C’ and define

Next we denote by w the unit vectors in the direction of rays making

Uy(1) := spt[|C7]| N By \ (BEH x R™™Y),
U@(T) =B N {(Tw](-i),y) |y e R" r > 71}

J

We also define

Gy (r) = graph(us|u, o).
Cé0<7):::graph<uﬂUykTQ'

For j large enough, depending on 7, we have
|ei_+k+p| > §|Dy1’“j’
on Uj;(7). Indeed we have

1 _
Clyktp = Cltktp — (Dypuj ) el+k+p>€1+k+p7
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and hence

Dpu; 1
APl i

|61L+k+p| - =
1+ |Dypuy[?

by Lemma 3.2.6 and Allard’s theorem provided j is sufficiently large.

Suppose first of all that wj(-l) = e;. Then we can write

n+k

VMg VM =6 - VM, = Z h(X)D,C.

Now 0,¢, =0forp=2,...,k+1, so

0

MI . xgMI 117 1,14-k+p
VMg VM, =h §a+Zh 5

= Ga-

Therefore, invoking the area formula and denoting by h; and (A7) the determi-
nant and inverse respectively of the (n — 1) x (n — 1) matrix (d,, + Dyu; - Dyu;),
it follows that

J j . 1 a
/G(’i)(T) vM xy - vM CadHVJH :/T /Rn,l (hjl'laxCa (m’ y)
n—1 a
1,1+k+
# G (e P | o
Now by the chain rule we have
9 2 2 8uj
(VR = 2 (c (Y b)) - W P G

" NeEam:

and so by integrating we have
1 8( %)
- /o /R lﬁr (W y)] dydz — 0.

Hence it follows that

/01 /Rn_1 (hn(x,y){i (Ca (W, y))) \/}Tjdydx
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[ L ((hsh =) g (< (e Tl
T ax( < ( x2—|—uj2’y)uj-gzli))dyd$‘

22+ |uy[?

Furthermore, we have that

|h; — 1| < C|Vu?,
(h§") = I — (Dpu; - Dqu;) + O(|Duyl*),

and so it follows

Lo 9 VG v
c1)(r)

<c (/ o 1010 ) (1D + D)

By 2

Moreover, since G§1) is defined by z; = w;(z,0,y) for each i = 2,... .k + 1, we
have for each ¢ > 2 that

Lo 9w T GV
Gj ()

Now \/E < 1+ C|Vu;* and (h2") = I + A; with |A;] < C|Vu,|?, so it follows

that
E+1

Juvy 2ot

This is invariant under rotations, hence the same formula holds without the as-

VOV —/(1)() Vu; - VCdH™ + o(Ej).

sumption w](-l) = e;. Analogous formulae will hold for each Gg»i) (1) for i = 2,3,4.

Hence
k+1

[,y Sl UV = [ Ve
Gj(T
Combining this with (3.4.19) we have

k+1
0=/ e VMJCa)dHVJH—/ Vu; - VGdH" + o(Ej) + S, E;,

B1 =

where |S;| < Cy/7. Dividing by E; and passing to the limit j — oo and then
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letting 7 N\, 0 it follows that
/ Vo VAN =0
C(0>ﬂB1

for every ¢ with 0(/0r = 0 in a neighbourhood of {r = 0}. As ¢ depends only

on r and y, we may write the above, after integrating by parts, as
/ SACAH" =0,
H

where H := {(r,y) € R" |r > 0}, and 9(r,y) = i, v(rw®,y), and w® are the
unit vectors in the direction of the 4 rays of the one-dimensional cross section of
CO). Defining the difference

dxh((ray) ::C(ray‘+'hel+k+u)'_'C(ray)a

the arbitrariness of ¢ implies

/ F(6un AC)AH = 0
H

for every |h| < 1/16 and for ¢ € C°(Bj)y4), because such ¢ satisfies d,,( €
C°(Byg) and 0(d,,1¢)/0r = 0 in a neighbourhood of {r = 0}. After a change of

c

variables we find

/H (0a,n0)ACAH™ =0 (3.4.21)

for all |h| < 1/16. It is easy to see that (3.4.21) holds for and ((r,y) that is even
in the 7 variable can be approximated in C?_ by a sequence (; with 9¢;/dr = 0 in

a neighbourhood of {r = 0}. Therefore, if ¢ is the even extension of ¥, we have

/ (6, 40) ACAH" = 0. (3.4.22)
g}le

Moreover, we trivially have the same identity if ((r,y) is odd in the r variable.
Thus (3.4.22) holds for any ¢ € C2°(Bg46), so by Weyl’s Lemma d,,,9 is a smooth

harmonic function. Now by a change of variables, we have that

‘ / 5a7h@d7-[”| -/
B B

9/32

< CIh] sup |,

5/16

GAH" — / HAH"
h) n

9/32

n
9/32
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provided |h| < 1/32. Consequently, it follows from standard estimates for har-
monic functions, that there is a harmonic function 0,: By; /64 — R* such that

h™ 100 n® — 0 in C*(BY, 64) as h — 0 with the estimate

sup ([oa[* + | DouJ> + |D?0,[?) go/ lo[2dH".
n By

17/64

Since 9, = 00/0y, on Bi 4, \ B, we have that

Ya
o(x,y) =0(x,y1,. ., 0, .. Y1) + /0 Vo, Y1y oyt oot Ypo)dt,
and hence letting x — 0 on each side it follows that with Y = (0,y) we have

99 0% Db 00 Al
Y = Aa Y ) Y = ) a9, 9, Y - ’
aya ( ) ! ( ) (9?/m 83/@ aym ayl aymaya ( ayl aym

and that 9 satisfies the estimate

sup (|0 + | Dy 0] + | D20 + |D}0f2) < c/ o2 dH".
17/64 Biy2

Now 9(Y) = $i, ki(Y), where x;(Y) € R* is the result of projecting x(Y)
to (w™)L in R and then identifying (w®)* with R*. Because of the radial
symmetry of € in (3.4.22), we have freedom to choose this identification. Moreover

the normal spaces to each of the w® are k-dimensional and don’t coincide, so they
span R*1. Hence k € C°°(B N Biy/64; B) and we have

sup (|Ii|2 + |Dyk|? + | Dy k[* + |D§,/{|2) < C’/ lv[2dH™.
BNBi7/64 Bi2

Combining this with Lemma 3.4.4 and the standard boundary regularity theory

for harmonic functions, see for example [22], the desired estimates follow. ]

3.5 Excess decay

Here we prove the main excess decay lemma. This is based on [52, Lemma 1],
and follows from a blow-up argument using the regularity properties of blow-ups

from the previous section.
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Lemma 3.5.1 (Excess decay lemma). Let 6 € (0,1/4). There exists g =
£0(C©.0) such that if V €V, C € C and C© satisfy Hypotheses A with €4 = &
and 6, = 1/16, then there is a C € C and a rotation T' such that

U —id| < CE,(C),  (3.5.1)
disty.(spt|[C]| N By, spt][Cl N By) < CEy(C),

1 N
dist*(X, spt||V|)d||T«C
5552 i oy 5GPV

6/4Rg

_l_

1 . -
g3 [, st X spt 0, ClNalV | < C*BH(C),

where C = C(C©) and v = v(C® ) > 1.

Proof. Fix § € (0,1/4) and take sequences ¢; N\, 0, VZ € V and C’ € C such
that V7, C/ and C satisfy Hypotheses A with 4 = ¢; and §4 = 1/16. Define
E; .= Ey;. We seek to prove that the conclusions of the lemma hold for infinitely
many j along this sequence. For each i =1,...,n —1 we let Y; := gekHJﬂ- € B.
Lemma 3.4.1 implies that there exist sequences Z; ; € spt||V7|| N B; such that
O(||V7|, Z;;) > 2 and Z;; — Y; as j — oo.

For large j, the Z; ; must span an (n — 1)-dimensional subspace 3, of Rk,
We choose the rotations I'; such that I';(3;) = B and I'; minimises |I' —id| among
all T which align ¥; with B. Since Lemma 3.3.5 implies that dist*(Z; ;, B) < CE?
for each 1, it follows that

II'; —id| < CE;,

for j sufficiently large. Thus
disty(I';'(B) N By, BN By) < CE;,
and so by the triangle inequality
B2 = /B dist?(X, spt[|C7]|)d|| T V7| < CE2,
Denote by @ the blow-up of I';,V7 off C( relative to C’. By construction, we

have 9(Y;) = 0 for i = 1,...,n — 1, and so for each i = 1,...,n — 1 and each
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I =1,...,4 there exists S;; € By/2 N ({0} x R"™!) such that

SL(Si) =0
where 0; denotes the C? extension to B of 9| HO- Hence by Theorem 3.4.5 it
follows that
1D, 5 (0)? < C6? /B e 15[2dH, (3.5.2)
for each [ = 1,...,4. Suppose that Hfo) =[0,00) x {0} x R*"1. We define two

linear functions on H 1(0) as follows

o0v

pr: HO = (HYY (r,y) — TE(O) +D,5(0) -y = Di(0) - (r, y),
o
ev: HY = (HO)', (ry) = 15 (0).

Hence the graph of p; over H(® contains the tangent half-plane to ©; at the
origin, while the graph of ¢; over H 1(0) is a half-plane with boundary equal to B.

Moreover, it follows from the definitions and the estimate (3.5.2) that

o1 — 1> < COPy|? |52d "
B ,5NCO)
This estimate is invariant under rotations, and so holds without our assumption
on H 1(0). By the same reasoning, analogous estimates hold for each H Z(O) where
[l =2,...,4. Combining this with Theorem 3.4.5 we find

4
; 9n1+2 /B o |5 — ¢|PdH" < C6?, (3.5.3)
where ¢; is defined analogously to c; for [ = 2,3,4. We now define the function
c: sptl|[CO| — (spt C?|)* by insisting that c|zo = ¢;. Then we construct a
new sequence of cones C7 as follows. If each C7 is the graph of some 1 over CcO,
then we define sz = 1; + Ej;c. It then follows that if u; and %; denote the graph
functions obtained from Lemma 3.2.6 applied to I';4V7 and C’, and I';, V7 and

C7 respectively, then they satisfy a relation of the form

(X +1;(X)) = ui (X + (X)) — Ejc + o( Ej).
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Hence it follows from (3.4.2) and (3.5.3) that

i 1 ~ 2 19/m 2
lim o WEQ [, s stV = o [ = efanr < oo,
and so for j large
i3, Aot (T ) V) < OO (35.4)

Since spt||V7|| N By/r, \ (Bg/f&{o x R"™1) coincides with the graph of a smooth
single-valued function on I';4C7, provided j is sufficiently large (depending on )

we have

1

dist?( X, spt||V7()d||T; . C’
577 oy ot ey BV DI,

< s [, dECC ST AV

Moreover, the definition of Ci clearly implies
dista (spt||C7|| N By, spt[|C7[| N By) < CE},

and so the result follows. O]

3.6 Regularity theorems

With Lemma 3.5.1 in hand, we can now prove the following regularity theorem.

Theorem 3.6.1 (Regularity theorem). There are constants e = ¢(C¥) > 0 and
a=a(C®) € (0,1) such that if V € V, V is stationary in Bg,, and

VI(Bg,) ., 1
<24 — c®
WnRg' + 32’ QV( ) <g,

then the following conclusions hold.
(1) There is a CY* function w: B — Bt with ||w||;.o < CQv(C®) and such

that singV' N By o = graph(w) N By s.
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(2) There are smooth embedded n-dimensional minimal submanifolds M; for
i=1,...,4 such that OM; N By, = graph(w) N By, for eachi=1,... 4.

(3) At every Z € singV N Byjy there exists a unique tangent cone Cz, which
consists of four half-planes meeting along a common (n — 1)-dimensional

subspace, and satisfies the decay estimate

1
pn+2

| st (X sptCalv] < @i (C0),
By(2)

for each p € (0,1/4] and where C = C(C©).

Proof. Pick 6 € (0,1/4) such that C6?Ry*? < 1/4, where C' is the constant from
Lemma 3.5.1. We claim that if € is chosen small enough, then by iterating Lemma

3.5.1 we can produce sequences of rotations I'; and cones C/ € C such that
(A)
¢ 0
T = Dyl € 55Qu(C™)
where we define I'y := id,
(B) .
disty, (spt[|C7|| N By, spt]|C 7| N By) < EQV(C(O))
where we define C? := CO),
(€)

R)"? 2 : L o~

v i . J _

G Jy dist™ (X, spt|| I C/|)d||V]] < 4],QV(C ), and
0

R(]J'(n+2) ) ‘
: dist” (X, spt||V]|)d||T"j4C’
e | st (X sptl[V )|y |

(BF+1 xRn—1

03y By amd)

< Lgi(co),

We prove this by induction. Suppose first that ¢y is as in Lemma 3.5.1, then
provided € < gy we may apply Lemma 3.5.1 with C = C©, to conclude that
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there exist C! € C and a rotation I'; such that

Ty —id| < CEy(C?),

disty,(spt||C*[| N By, spt||CV|| N By) < CEv(CY),
1
4Rn+2

/ dist? (X, spt| D1 Cald |V < CO2E2(CO) < o B2 (CO),

9n+2
=
gn+2 I1(B, _1\(13’“+1

6(4R

dist® (X, spt |V [T 1 C' ) <

EZL(CO).
_1 XR71) ARy V(e

Since EZ(C©)) < Q%(CO) the base case evidently follows. Now suppose that
we have found some sequences C',...,C/ and I'y,...,T; satisfying (A)-(D) and
we wish to construct C/*! and T'; ;. We do this by applying Lemma 3.5.1 again,
with C7 in place of C, and V7 := (Mo,0ir3 © IV in place of V. To do so
we need to check that we can choose € small, independently of j, to ensure both

ij(C(O)) < &g and disty(spt|/C’|| N By, spt||C(0)||) < gp.

Notice first that (B) and the triangle inequality together imply that

, 1 1
disty (spt||CI[| N By, spt]|CO N By) < C ( Fot 2]) Qv(C©) < C,
(3.6.1)
where C = C(C©) is independent of j. Therefore we need only choose ¢ small

enough to ensure Ce < g.

We next show that Qy;(C®) < 5. We may assume that Qy;-1(C©) < &,
since this is the case by assumption for j = 1, and we will establish the same for

j = j+ 1 presently. Combining (A) with the triangle inequality yields

T, —id < C ( + i . ;j) Quv(CY) < Ce, (3.6.2)

where C' = C(C©) is independent of j. Furthermore, (C) and (D) together imply

Q(CY) < iy Qv( ?). (3.6.3)

It therefore follows from (3.6.3), the triangle inequality and (3.6.1) that

E3(C0) = [ dist’(X,spt |COa VY| < 0@} (C).

Since Qy;-1(C©) < g4, we can apply Lemma 3.2.5 to V/~! and, supposing that
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is sufficiently small, deduce from (3.6.2) that V7 is graphical with small gradient
over C¥ in the region B \ (Bf/zl x R*1). Tt follows that

dist?( X, spt||[V]))d||CQ|| < CEZ,(C?) < CQ%(CY),
/Bl\(Bf;leRn—l)) (X, spt |V [])d]] | < Vil ) < CQv( )

where C' is again an absolute constant depending only on C(®, not on j. Piecing
all of this together, we can find a constant C' = C(C®) such that

QY (CY) < CQ(C),
disty (spt[|C7|| N By, spt[|C” | N By) < CQv(C™).

We choose ¢ small enough that C'e < ¢y, which allows us to apply Lemma 3.5.1
to V7 and C’. This produces a rotation I' and a cone C/*! € C such that

T —id| < CEy;(C7),

disty (spt||C?TH| N By, spt||C/|| N By) < CEy;(C),
1
6n+2

[ dist?(X,sptlIDeC AV < COPER (CY),
By

dist? (X spt [V AT 0| < o2} ().

0(4Rg) 1

=
071“1‘2 F(BORSI\(BIC-‘(-I XRnfl)

Defining I'j;, := I'ol';, and noting that (C) implies that E2,(C’) < 477Q%(C©),
properties (A)-(D) clearly follow for C/*! and I'j 1, thus establishing (A)-(D) for
all 5 > 1 by induction.

Next observe that given any Z € singl’ N By/;, Lemma 3.3.5 implies we can
apply the above reasoning to Vz := nz1_(2ry)-14V, provided we choose ¢ small
enough (but independent of Z). From properties (A) and (B) we deduce the
existence of sequences of rotations I'z; and cones CjZ € CwithI'z; — I'z; and

CjZ — Cz € C. Moreover the following properties hold.

Tz —id| < CQy, (C?).

disty (spt||Czl| N By, spt||CO|| N By) < CQy,, (C?).
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(III) There is a = a(C®) such that for each p € (0,6) we have

1 / . .9
dist” (X, spt||Vz|)d[[Tz4Cz ||
pn+2 FZ(BpRgl\(BI;(z;O)fl xRn—1)) #

< Cp™Q7,(C)

(IV) For «a as in (III) we have

1

+ pn+2

/BP dist®(X, spt||T 72 Cz|)d||Vz|| < Cp* @}, (C).

Notice in particular that (III) and (IV) imply that 'z C is the unique tangent
cone to V at Z. Properties (III) and (IV) follow by a similar argument to that
used in the proof of Lemma 3.4.4, namely by interpolating the scales #7 and then
choosing a such that 6%* = 1/4.

Let y € Bf/gl(()) and suppose that singV’ N By N (R¥™ x {y}) contains
more than one point. Choose any two such points Z; and Z,, and define ¢ :=
|Z1 — Z5| > 0. Suppose that at least one of the Z; has O(||V|], Z;) > 2, indeed
suppose without loss of generality that O(||V||, Z1) > 2. Note that Lemma 3.3.5
implies that o < 0 provided ¢ is suitably small, so by properties (IIT) and (IV)
applied at Z; we have

1

— dist?(X, spt||Vz, |Nd||T 2 »C
o] dist? (X, 5pt[Va ) Co |

20/ (arg) R 1)
< 0(20)20!@%/21 (C)
1

(20)2 /B dist® (X, spt|| Tz, £C [Nd|[Vz |l < C(20)*Q7, (C?).

Rescaling this implies

Tozomenvz, (C) < CQY, (C),
with ¢ = C(C®) independent of o. Assuming again that ¢ was initially small
enough, we conclude from Lemma 3.2.5 that 1g2/ry# V2, is smooth inside B \
(Byfy x R™™1), but this is a contradiction, as 1o.ss/r,%Vz, has a singularity on
8Bff21(0) x {0}"~! by construction. Consequently, whenever a slice singl’ N
(RF* x {y}) N By, for some y € B?/_Ql contains at least one point Z of density
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greater than or equal to 2, then in fact singV’ N (R*™ x {y}) N By = {Z}.
It follows that {Z € Bys | O(||V||,Z) > 2} is contained in the graph of some
function w: B — B*.

Next observe that by (III) and (IV), it follows that if p € (0,6) and we define
VZ = (TIO,pRO_1 © Fgl)#VZ7 then

Q7,(Cz) < Cp™Q7,(C).

Hence, we can apply Theorem 3.3.1 to conclude that for every Y € singVZ N Bijs
with O(||Vz||,Y) > 2 we have

dist*(Y, B) < Q% (Cz),

and so
p~tdist(Y, ' z(B)) < Ce (3.6.4)

for every Y € singV; N B,» with O(||[V|[,Y) > 2. Since we also know that
II'z —id| < Ck, it follows that w is Lipschitz continuous with constant at most
1 say, provided that € is small enough. Lemma 3.4.1 implies that H" -almost
every slice By, N (RF! x {y}) contains a singularity Z with density at least 2,
hence good density points form a dense subset of graph(w). Since the singular
set is closed and the density is upper semi-continuous, it follows that {Y €
singV | ©(|V|,Y) > 2} N Byjs = graph(w) N By, and hence by the earlier
argument that singV’ N By, = graph(w) N By /s.

It only remains to show that w is CY® with the claimed estimate. Notice
first that it follows from (3.6.4) that w is differentiable at every z € B, and that
if Z = w(z) denotes the corresponding singularity Z € singl’ N By, then the
tangent plane to graph(w) at Z is I'z(B).

Next observe that given Z;, Z, € singV’ N By s, by setting o = Ry|Z; — Zs|,
and provided that 40R;' < 6, it follows from property (III) that Q% (Cz) <
Co2Q%(C®), where V := (Mo40r;* © I',1)4Vz,. We then repeat the previous
iteration scheme that established properties (I)-(IV), with V' in place of V, Cg,
in place of C* and Z := Ry(40)~'T';}(Z, — Z1) in place of Z. The conclusion is

the existence of a rotation I’ » and a cone C’Z such that

U, —id| < CQy(Cay),
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disty(spt| ]| N By, spt]|Cz || N By) < CQu(C),

1 / . .9 ~ 2~ A 2012 (A
X dist*( X, spt||V|Nd||ITy.C,| < Cp**Q%(Cy),
pn+2 FZ(BﬂRal\(Bﬁ(tl;o)*1 xRn=1)) Vi vaTa

1
pn+2

[, dist?(X,sptlIE £, €5 AT < CoQ3(E,).

It follows that I P #C > is the unique tangent cone to V at Z. However we also
know that I'z,,C, is the unique tangent cone to V' at Z, and so we deduce that
C 5 = Cz, and that r s =0z0T }11. It therefore follows that

Tz, =Tz | =Tz 0T —id] < Co®Qv(CY) = C|Z) — Z5|*Qv(C?)

provided that Z; and Z5 were sufficiently close to begin with, but the inequality
holds trivially if |Z; — Zs| > 6/4 by the triangle inequality and the fact that
Tz, —id| < CQy(C©). Hence the tangent planes of w vary Holder continuously,

implying that w is C* and we have the estimate
w0 < CQUICY).

]

The above theorem combined with Allard’s reflection principle [2] (see also
Lemma 1.2.8) implies the following boundary regularity result for a subspace

boundary. Before stating it, we define the boundary singular set.

Definition 3.6.2 (Boundary singular set). Let U C R"** be open, and let B C U
be an (n —1)-dimensional C* submanifold. LetV be an integral n-varifold that is
stationary in U \ B. We define the boundary singular set, denoted singgV to be
the set of all x € B, such that there is no neighbourhood W C U of x for which
M := spt||V|| N W consists of a smooth n-dimensional submanifold of W with
OMNW =BnW.

Remark 3.6.3. Notice that the boundary reqularity theorem of Allard and Bourni
implies that there is an € > 0 such that

singzV = {z € B|O(|V],z) > 1/2 +€}.

Corollary 3.6.4. There exists ¢ = ¢(C0) € (0,1) such that if V is stationary
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in Br, \ B, (W, RV (Br,) <14 1/64, C© is a pair of half-planes meeting
along B for which Qv (C®) < €/2, V has no triple junctions in B;(0), and
singV N B1(0) N B has full " '-measure, then the following conclusions hold.

(1) singV N By2(0) \ B = 0, that is, there are no interior singularities, only

boundary singularities.

(2) There are smooth embedded n-dimensional minimal submanifolds M; for
i = 1,2 such that OM; N By2(0) = B N By/2(0) for each i =1,2.

(3) At every Z € singgV N By there exists a unique tangent cone Cyz, which

consists of two half-planes meeting along B, and satisfies the decay estimate

1
pn+2

[, oy X sptlC2 NIV < Cp @3 (C)
B,(Z

for each p € (0,1/4] and where C = C(C©).

Proof. Let C© € C denote the pair of intersecting planes containing C©. Fur-
thermore, if we define ¥: z — pg(z) — ppi(z), where pp is the orthogonal pro-
jection onto B, then Allard’s reflection principle tells us that V=V+ V4V
is stationary in Bpg,. It is easy to verify that V taken with C© gatisfies the
assumptions of Theorem 3.6.1. Hence VN By /o consists of four smooth sheets
meeting along B (since we assumed that the singular set was a dense subset of
B), and so spt||V|| N By is contained in these 4 sheets. However the constancy
theorem (Theorem 2.2.14) implies that V' must consist of exactly these sheets
with constant multiplicities. Any such sheet must contribute at least a factor
1/2 to the mass ratios in By /2, and so at most two of the sheets are contained in
spt||V||. Since Qv (C®) < ¢, choosing ¢ appropriately guarantees that the two
sheets contained in spt||V|| are indeed those closest to C(?). Property (3) now
follows directly from Theorem 3.6.1. O

3.7 Construction of the cover in Section 3.2

We prove Lemma 3.2.3 used in the proof of Lemma 3.2.6. We recall the statement

for the reader’s convenience.

Lemma. Given ¢ <1,y <1 it is possible to choose (&, ;) € B1(0)\ B such that
(Tie.1,2¢/9(Gi)) are disjoint, (Tig,|.c/2(G)) cover B,(0)\ B and T, .(¢;) C B1(0) \ B
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for each i. Moreover there is N = N(n) such that (Ti¢,)/2(¢i)) can be divided into

N(n) disjoint subcollections.

Proof. Let (&, () correspond to any maximal disjoint collection of Tie,| 2¢/9((i)
such that T, | c/2(¢) N By (0) # 0. We claim that

By(0)\ B € U Tieijer2(Gi)-

We observe that by rotational symmetry, if we define H := [0, 00) x {0}* x R*~1,
this is equivalent to the sets Die,j.2¢/9(Gi) = Tig|,2¢/9(¢:) N H being disjoint, and
H N B,(0) C U;Djg,e/2(¢). For simplicity then, we work in H and assume
without loss of generality that (&,(;) € H for all i. Seeking a contradiction
suppose that (z,y) € H N B,(0), and (z,y) & Die,|,c/2(¢;) for every i, but that
there exists a j such that Djy|2c/9(y) N Die,.2¢/0(¢;) # 0, in particular there exists
some (a,b) € Diyj2c/0(y) N Digj2¢/9(¢5). Then, by the triangle inequality, and

since x, §; and a all lie on the same half line, it follows that

(1 =) (] + 1§10

(2, 9) = (&, Gl < 5 . (3.7.1)
Hence we find that
o] < g + =Dl 18D 00— le | A=)kl

where we used the fact that ¢ < 1. Rearranging this yields

(10 =) 5

7] < m@ < 711Gl (3.7.2)
Substituting (3.7.2) into (3.7.1) we see
) — (.0 < L8]

implying that (z,y) € Dj¢,|.c/2(¢;), a contradiction. Finally we wish to show that
Die,1.c(¢) € HNB,(0) for each 4. Fix some 4. By hypothesis D¢, /2(() N B, (0) #
0 so there exists some (z,y) € B, (0)NH such that (x,y) € Dj,|.¢/2(¢). It therefore
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follows that

(1 —)I&]
61 < 16 )1 < (e 0)| + (z.0) — (6. )| < 7+ L=,
where we used that ¢ < 1. Rearranging this implies that |;| < 4v/(3 4+ ), and

so we see that
=9 _ 4
3+v 3+

If we now pick any (a,b) € Di¢,c(¢;), then we can estimate

(&, Gl <7+

4y (I=)[& _ 293 —1)
\(a,b)|S!(&,Ci)lJrl(&,Ci)—(a,b)lS3+7+ 5 < 35y

Requiring the right hand side to be less than 1 for all v € (0,1) is equivalent
to requiring that (5y — 2v2)/3 is less than 1 for all such . This however is
easily seen to be increasing, and equals 1 if v+ = 1. Hence we conclude that
Die,.c(¢) € B1(0) N H; for every 4.

We now claim that there is N(n) € N such that for any fixed ¢, there are at
most N values of j for which D¢, /2(¢) NV Djg,|.c/2(¢;) # 0. Fix 4, then given such

a j we must have

e =NU&I+ 16D o B+NI&l (=)&)l
651> Il = |l = 1&d | > 16l - | > -
This implies that

( 47)\§j|2( +47)|€| and so |5j|2( ;_7)7'“2 |§|2|§2|'

Therefore, if (&;,(;), (€, (k) correspond to two disks, each of which intersects
Dig,1.c/2(Gi), then, since D¢ 2c/9(¢;) and Die, | 2¢/9(Cr) are disjoint we must have
c(1 — )&

> .
9 - 9

(&5, 6) — (&, G| = c(1 = )& + 1€])

In other words, we have a lower bound on the distance between any two (&, (;)
and (&, () corresponding to disks intersecting Dig,|/2(¢;). On the other hand,
we find

G-&l | @ =7)I&]

<
< 1 + 1 ;

&l <6l 416 — & < Ja) + U ‘Wfi' +161)
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which, upon rearranging yields

13

| <
61 < =3

Therefore we have

_ el =)l + &)

|(&is ) — (&5, )] < Se(l —9)[&

< .
4 - 8

Thus if J; is the set of indices j for which Dy, c/2(Gi) N Dig;j.c/2(¢;) # 0, then for
any 7, k € J; we have

Se(l = )I&l

6G) — (65, < 28, (1= )lé

|(€k7Ck) - <€j7Cj)| > f

Rescaling by (c(1—7)|&])7}, translating and identifying H with R™ this is equiv-
alent to the following: a collection of points x; € R™ such that z; € Bs/5(0) for
each j and |z; — x| > 1/9 for each j # k. Evidently there exists N(n) such that
#{z;} < N(n). This of course implies that for any = € B;(0) \ B, there are at
most N (n) indices j for which z € Ti¢,| c/2(¢;)-

Finally we note that this now easily implies that there is N(n) such that
the cover (Tig,)/2(¢;)) can be split into N(n) disjoint subcollections. Indeed any
Tii.c/2(¢) can overlap the regions 2771 < |z| < 27! for at most two different
values of [ => 0, and for each such region, only finitely many tori will intersect
it. By applying the pigeonhole principle, for each [ we can separate the tori
intersecting the region 27'=1 < |z| < 27! into at most N(n)+1 disjoint collections.
Since intersecting tori can only overlap at most three such regions, we get that the
cover (Ti¢,|.c/2(¢;) can be separated into at most 3(N (n)+1) disjoint subcollections.

[
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Chapter 4
Mean curvature flow

In this chapter we will introduce the mean curvature flow, as well as some basic
results concerning existence, behaviour and regularity of the flow. Of particular
interest are the monotonicity formula of Huisken [27] and the local regularity
theorem of White [60].

4.1 Mean curvature flow

Let M™ be an n-dimensional smooth manifold, and let Fy: M — R be a
smooth immersion. A mean curvature flow is a one parameter family of immer-

sions F': M x [0,T) — R""* satisfying the following partial differential equation

(F@.t) =Hp.t) Yt eMx(©T)
F(p,0

1
(4.1.1)
) ):F()(p VPEM,

where H(p,t) denotes the mean curvature vector of M, := F(M,t) at the point
x(p,t) = F(p,t) and (-)* denotes the projection to (T, M;)*. In that which follows
we will frequently use z to denote F'(p,t) and we suppress the arguments unless

there is danger of ambiguity.

Remark 4.1.1. If M has no boundary then it is possible to locally reparametrise
F to eliminate any tangential components of motion (see [40, Proposition 1.3.4]
for the details). If, for example, M is also compact then we can find a global
reparametrisation that eliminates tangential components of motion. Indeed one
can choose a one-parameter family G(p,t) such that F(M,t) = G(M,t) for each
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t, but such that

(%) -0

In particular we reformulate (4.1.1) as

OF

- (p1) = H(p,t). (4.1.2)

Moreover, (4.1.2) may be written in the following, highly aesthetic form

1) = dusF (o),
where Ay, denotes the Laplace-Beltrami operator of My, corresponding to the
metric on M, induced by the Euclidean metric on R" . In this way we see that
we can consider the mean curvature flow to be a type of geometric heat equation.
It is important to note however that this equation is in fact non-linear due to
the metric dependence in Ayyy. This only introduces terms corresponding to first

order spacial derivatives of F', so the equation is at least quasilinear, which makes

it much more analytically tractable.

4.1.1 Examples

We can get a good understanding of the basic behaviour of the flow by examining
some examples. The first and most simple example is the flow of the round
sphere. Consider M = S" and let Fy(p) := RoG(p) where G is the standard
embedding of S" into R"** and Ry > 0. From the rotational symmetry of M
and the rotational invariance of the equation, one might (correctly) suspect that
the sphere remains round under the flow. Indeed if we suppose the existence of
a solution of the mean curvature flow of the form F(p,t) = R(t)G(p), then upon
substitution into (4.1.1) we obtain an ordinary differential equation for R(t) with

the initial condition R(0) = Ry. This equation is easily solved to give

R(t) =+\/R3 —2nt  t€0,R2/2n).

As we can see, the mean curvature flow of the sphere shrinks to a point in finite
time, beyond which there is no way to classically extend the flow. Finite time

singularities like this are a feature of the flow, and more generally of reaction-
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diffusion equations to which the mean curvature flow is closely related. Since we
can not in general expect the flow to exist for all time, understanding the nature
of singularities of mean curvature flow is of crucial importance. One question in
particular, which forms the basis of the problem studied in Chapter 5, is whether
one can continue the flow in some meaningful way once such singularities develop.

Similar to the example of the shrinking sphere is that of shrinking cylinders.
Indeed the cylinder M = S¥ x R"* with initial radius Ry remains cyclindrical,

and shrinks about its axis with the radius evolving by the equation

R(t) = \/R2 — 2kt.

More generally let F': M x [0,7) — R"™ be any flow defined on a maximal time
interval that evolves by homothetic rescaling about a point. Indeed suppose that
F(p,t) = zo + A(t)(F(p,0) — x¢) is a solution of mean curvature flow. Then it
follows that A\(t) = (/1 —t/T and that at each time ¢, H (-, t) satisfies the elliptic

equation
7 (ro —2)*

Ao t) = S (4.1.3)

where T is the maximal existence time.

Definition 4.1.2 (Self-shrinkers). We call solutions of the mean curvature flow
satisfying (4.1.3) self-shrinking solutions. Any such solution shrinks homoth-
etically around xy to a point. If in particular M satisfies H = —xt, then
M; := /=2tM defines a mean curvature flow for t € (—o0,0). In this case

we call M a self-shrinker.
In an entirely analogous manner, we can also consider self-expanding solutions.

Definition 4.1.3 (Self-expanders). We call any solution of the mean curvature

flow satisfying the equation

- (x — x0)*

H(p,t) = 1T (4.1.4)

a self-expanding solution. Such a solution necessarily expands homothetically by
scaling about the point xq. If M satisfies H= xt, then M, == /2tM is a solution

of the mean curvature flow fort € (0,00). In this case we call M a self-expander.
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Finally, given one solution of the mean curvature flow F'(p,t), we can con-
struct a new solution by parabolically rescaling (z,t) — (Ax, A?t) for any A > 0.
Rescaling about singularities to examine the asymptotics of solutions at singular
points is a fundamental technique in the regularity theory for mean curvature

flow.

4.1.2 Short-time existence

Thus far we have only considered specific examples of the mean curvature flow,
but under certain conditions on the initial condition M we can make more general
statements about the existence and uniqueness of solutions. This is a direct
consequence of the Nash-Moser implicit function theorem and work of Richard
Hamilton [24, 25], first applied to the mean curvature flow by Gage-Hamilton
[21], see also Smoczyk [56].

Proposition 4.1.4 (Short-time existence and uniqueness). Suppose that M is a
closed (i.e. compact and without boundary) n-dimensional smooth manifold and
that Fy: M — R™* is a smooth immersion. Then there is a unique smooth

solution of (4.1.1) on a maximal time interval [0,T) where T € (0, c0].

Remark 4.1.5. In the codimension 1 case, i.e. where k = 1, Huisken-Polden
[29] provided an alternative proof by writing the evolving hypersurfaces as normal
graphs over the initial condition. They then obtain the result by applying standard

theory of parabolic partial differential equations.

One need not assume smoothness of the initial immersion Fy, it suffices to
assume only that it is Lipschitz continuous. One can then show that the flow

becomes instantaneously smooth, i.e. My is smooth for all times t > 0.

In case M 1is mon-compact, the situation is more complicated. Indeed the
short-time existence and uniqueness for non-compact, complete manifolds is still
an open question. In the co-dimension 1 case, work of Ecker-Huisken [16] shows
that if M is an entire graph and satisfies a local Lipschitz condition initially, then
the result holds.
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4.2 Monotonicity formula

A fundamental tool in the analysis of mean curvature flow is the Gaussian density.
This serves as a parabolic analogue of the mass ratios and density that prove so
successful in analysing the structure of stationary varifolds (see Chapter 2). In
particular we will be able to develop analogues of both the monotonicity formula
(Theorem 2.2.15), and Allard regularity (Theorem 2.3.2).

4.2.1 Gaussian density and local regularity

Definition 4.2.1. We first define the backwards heat kernel p(y, ) : R™™ x
(—00,t9) — (0,00) as follows

(2. 1) 1 |z — x|
z xz,t) = exp|——F——+1|.
Plaasto) (dr(to — 072 P\ "4ty — 1)

Note that this differs slightly from the usual definition of the backwards heat
kernel, in that the exponent in the scaling factor is n/2 rather than (n+%)/2. This
is the correct scaling for integrating over n-dimensional surfaces and in particular

integrating p(s,,¢,) over an n-dimensional plane containing the point z¢ will return
1.

Definition 4.2.2. For a mean curvature flow (My)o<i<r we define the Gaussian

density ratio at scale r centred at (xo,to) by

®(x07 th 7") P = /M p($07t0)(x7t0 - T2)dH”

to— r2

‘.1' _ ]70’2 n
= o (-
for0 <ty <T,0<r<+/ty and any xy € R"**,
Huisken [27] proved the following monotonicity formula.

Theorem 4.2.3 (Monotonicity Formula). If (M;)o<t<t, is a mean curvature flow,

(defined on a not-necessarily maximal time-interval [0,)) then

d o (zo—a)t ?
il AdH (1) = — g_\o—2
dt /Mt P(zo,to) ($7 )dH (ZL‘) /Mt Q(to _ t)

P(zo,t0) ($, t)dHn(x)7

115



for each t € (0,tp).

Remark 4.2.4. Notice that the integrand on the right hand side is zero if and
only if each M, satisfies the shrinker equation (4.1.3) with T = to, and so the
Gaussian density ratios are constant if and only if the flow is a self-shrinking

solution.

The monotonicity formula implies that ©(xg,to,r) is non-decreasing in r,

which leads to the following definition.

Definition 4.2.5. We define the Gaussian density to be
@(Jfo,to) = h\I‘I(l) @(Zﬁo,to,r). (421)

If (zo,to) is a regular point of the flow, which is to say that in a space-time
neighbourhood of (zy, ty) the flow may be smoothly parametrised, then it follows
that O(zg,t9) = 1. This follows because the surface M;, has a tangent plane
at zg, and at very small scales, the Gaussian density ratio centred at (zo, %) at
scale 7 is the same as the Gaussian density ratio centred at (xo,ty) at scale 1
of the flow rescaled parabolically by a factor 1/r about (zo,tp). If 1/r is very
small, then in a large space-time neighbourhood of (xg,ty) the rescaled flow is
very close to the tangent plane of M;, at xy, and hence the density ratios will
be close to 1. As r — 0 it follows that the Gaussian density ratios will converge
to 1. Conversely one can show that if the Gaussian density is 1, then at small
scales the flow must be very close to a plane, from which it follows that there is
a smooth local parametrisation of the flow, see [40] for the details.

Much like the case of stationary varifolds, we can actually formulate a more
quantitative e-regularity theorem. The following version is due to White [60].
There are others which we will mention later, but despite some fairly strong a
priori assumptions on the regularity of the flow (i.e. that it is smooth), this par-
ticular version turns out to be surprisingly versatile and enough for our purposes

in most situations.

Theorem 4.2.6 (Local regularity). Let 7 > 0. There are constants eo(n, k) > 0
and Cy(n, k,7) < oo such that if OM; N By, = () for t € [0,7?) and

O(z,t,p) <14¢ p < T\/f, T € Bo(xg), t € [0,7‘2),
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then
|Al(z,t) < — x € My N B,(x), t € [0,r7),

Vit

where A(x,t) is the second fundamental form of M, at the point x.

4.3 Lagrangian mean curvature flow

In Chapter 5 we will be specifically interested in Lagrangian mean curvature flow.
Lagrangian submanifolds arise naturally in physics, in areas such as Hamiltonian
mechanics, or more abstractly in geometry, such as the study of Calabi-Yau man-
ifolds. In this section we give a quick overview of some of the relevant complex
geometry that will be needed later.

We consider C" with the standard complex coordinates z; = x; +¢y;. In what
follows we will often identify C™ with R?*. We let J denote the standard complex
structure on C" = T,C", defined by

0 0 0 0

gu; Oy Oy O

We denote by w the standard symplectic form on C", defined by
w = Z dx; N\ dy;.
i=1

Definition 4.3.1. We say that a smooth n-dimensional submanifold of C" is
Lagrangian if w|, = 0.
Definition 4.3.2. Let the closed n-form €1, called the holomorphic volume form,

be defined by
Q:=dzx N Ndz,.

On any oriented Lagrangian a simple computation shows that Q| = e®Zvoly,

where voly, is the volume form on L.

Definition 4.3.3. We call €t : L — S' the Lagrangian phase, and 0;, the La-
grangian angle, which may be a multi-valued function. In the case that 0 : L — R

s a single valued function, we say that the Lagrangian L is zero-Maslov.

We henceforth suppress the subscript L. An equivalent condition to 6 being
single valued is [df] = 0, that is, df is cohomologous to 0.
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Definition 4.3.4. If 0 = 0, is constant, then we say that L is special Lagrangian.

In this case L is calibrated by Re(e~*voly), and hence is area-minimising in

its homology class. We also consider the Liouville form A on C" defined by

A=Y xdy; — yd;.

J=1

A simple calculation verifies that d\ = 2w.

Definition 4.3.5. If there exists some function B on L such that N = df then

we say that L is exact.

In this thesis we will be more interested in local exactness, that is when the
Liouville form A only has a primitive in some open set. It can be shown that any
smooth Lagrangian is locally exact.

The following remarkable property of smooth Lagrangians relates the La-

grangian angle and mean curvature vector (see for example [57])
0= Jvo.

Consequently we see that the smooth minimal Lagrangians are exactly the smooth

special Lagrangians.

Definition 4.3.6. A Lagrangian mean curvature flow in C" is a mean curvature

flow (Ly)o<t<r with Ly Lagrangian.

Smoczyk [55] showed that the Lagrangian condition is preserved by the mean
curvature flow, so for a Lagrangian mean curvature flow we have that L, is La-

grangian for every t.

4.4 Brakke flows

The final ingredient needed for the next chapter is the notion of a Brakke flow.
These are weak, measure theoretic notions of the mean curvature flow that enjoy

good compactness properties. We start with the motivation for the definition.
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4.4.1 Motivation

Suppose that M; is a smooth mean curvature flow in U C R*™ for t € [0,7).
Then given any smooth test function ¢: U x [0,7) — R such that the support
of ¢(+,t) is compactly contained in U for each ¢, we have by differentiating under

the integral sign and using (4.1.1)

d ~ = Op
o | pann = [l S
dt MtSO/H M, PIHI"+ Ve +at "

Conversely, if F' : M x [0,T) — R"* is a smooth one-parameter family of

immersions and M, := F(M,t) satisfies

d ~ = Oy
S pd "</ | H|? CH+ Z2ann
dt Mtw H = My AU+ Ve +8t H

for every smooth test function ¢ as above, then it follows that M; must be a

mean curvature flow. This forms the basis of our definition.

4.4.2 Definition

Though originally introduced by Brakke in [8], we use the slightly reformulated

definition of Ilmanen [32].

Definition 4.4.1. Let y1 be a Radon measure on R"* and p € C2(R"* [0, 00)).
If any of the following 4 cases hold,

1. w{p > 0} is not an n-rectifiable Radon measure,

2. 10V |{y > 0} is not a Radon measure on {¢ > 0}, where V' is the rectifiable
n-varifold associated with p restricted to {p > 0},

3. [0V|{e > 0} is singular with respect to ju{e > 0}, or

4. fg0|ﬁ|2d,u = 00, where H is the generalised mean curvature vector of V,

i.e. the Radon-Nikodym derivative of |0V'| with respect to yu;

then we define B(u, ) := —oo. If all four of the above cases fail, then we define

B(u, ¢) == /—s@\ﬁl2 + V- Hdp.
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We say that the family of Radon measures {ji;}+>o0 is a Brakke flow if for allt > 0
and ¢ € C*(R"* [0, 00)) we have

Dypu(p) < Blpe, @),

where for a function f: R — R, D, denotes the upper derivate of f, defined by

D, f(t) := limsup M

s—t s—1

We say { pu }+>0 is an integral Brakke flow if u; corresponds to an integer rectifiable

n-varifold for almost every t > 0.

The primary reason for considering these weak flows is the following compact-

ness theorem.

Theorem 4.4.2. Let {ui}i>o be a sequence of integral Brakke flows, and suppose
that for each U CC R™™* there is a C = C(U) < oo with

sup 1;(U) < C.
it
Then there is a subsequence {/Lij t>o0 and an integral Brakke flow {u:} such that
Hij — Mt

as Radon measures for each t > 0. Moreover, for almost every t > 0, there z's
a subsequence {ut >0 (where the subsequence depends on t) such that if V(,ut )

denotes the integer rectifiable n-varifold associated with ,ut , then

Vi) = V()
as varifolds.

The proof can be found in [32].
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Chapter 5

Short time existence of

Lagrangian mean curvature flow

5.1 Motivation

A long standing open problem in the study of Calabi-Yau manifolds M is whether,
given a Lagrangian submanifold L C M, we can find a special Lagrangian L in
the same homology or Hamiltonian isotopy class as L. As we saw in Section
4.3, special Lagrangians are precisely those Lagrangians that are area minimis-
ing in their homology class, because they are calibrated by the real part of the
holomorphic volume form. Consequently this question may be naturally posed
as a minimisation problem; that is, given a Calabi-Yau manifold M and a La-
grangian L C M, can we find a Lagrangian L minimising area in the homology
or Hamiltonian isotopy class of L? Such an L, if it exists, will automatically be
special Lagrangian. It turns out that this minimisation problem is very subtle
and fraught with difficulties. Indeed Schoen-Wolfson [49] showed that when the
real dimension is 4, in any given class one can find a Lagrangian that minimises
area among Lagrangians in that class, but that the minimiser need not be special
Lagrangian. Later Wolfson [66] found a complex surface and a Lagrangian sphere
in this surface such that the area minimiser among Lagrangians in the homology
class of the sphere, is not special Lagrangian, and the area minimiser in the class
is not Lagrangian. In light of examples like this it has been suggested that the
mean curvature flow, being the gradient descent for area, could be used as an

alternative way to construct special Lagrangian submanifolds.
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In order to flow to a special Lagrangian, it is necessary for the flow to exist
for all time, so that one may pass to the limit ¢ — oo. Unfortunately, Neves [45]
showed that one cannot expect long time existence in general. Indeed given any
initial Lagrangian L, he showed that there is L in the same Hamiltonian isotopy
class as L such that the mean curvature flow starting at L develops a finite time
singularity. Since we can’t hope to show that the flow exists classically for all
time, we instead investigate whether it is possible to continue the flow in a weak
sense. Specifically, is it possible to restart the flow from the singular Lagrangian
that arises at the singular time?

The starting point is another result of Neves, who was able to classify sin-
gularities of zero-Maslov Lagrangian mean curvature flow [44]. Indeed it turns
out that any singularity is asymptotic to a union of Lagrangian planes. Since
special Lagrangians are necessarily zero-Maslov, and Lagrangian mean curvature
flow preserves the Maslov class, considering singularities that arise under zero-
Maslov mean curvature flow is not overly restrictive. Indeed if we are to flow
to a special Lagrangian, the flow must be zero-Maslov itself. In fact we make
a further simplification and study the simplest possible such singularity, namely
one which is asymptotic to a transversely intersecting pair of planes. Motivated
by this we prove the following theorem (which has appeared in [5]), which an-
swers the existence part of a conjecture of Joyce [35, Problem 3.14]. Currently

the corresponding uniqueness statement remains open.

Theorem 5.1.1. Suppose that L. C C" is a compact Lagrangian submanifold of
C™ with a finite number of singularities, each of which is asymptotic to a pair
of transversely intersecting planes Py + Py such that neither Py + Py or P, — Py
are area-minimising. Then there exists a T' > 0 and a smooth Lagrangian mean
curvature flow (Ly)o<i<r Such that ast \ 0, Ly — L as varifolds, and in C,

away from the singularities.

We remark that the assumptions L C C" and L compact are made to simplify
the analysis in the sequel, however since the analysis is all of an entirely local
nature we may relax this to L C M for some Calabi-Yau manifold M, and to L
non-compact provided, in the latter case, that we impose suitable conditions at
infinity.

The strategy of the proof is based heavily on work of Ilmanen-Neves-Schulze

[31], who studied short time existence of the planar network flow. A network is a
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finite union of embedded line segments of non-zero length meeting only at their
end-points. A regular network is one in which line-segments meet only in groups
of three, making angles of 27/3 with one another. For regular networks, short
time existence theory had already been established through work of Mantegazza-
Novaga-Tortorelli [41], but the existence of short time solutions of non-regular
networks remained open.

Self expanding solutions of the network flow asymptotic to arbitrary unions
of half-lines meeting at the origin had been established by Mazzeo-Saez [42].
Since non-regular points are asymptotic to such unions, one would expect a solu-
tion with non-regular initial condition to be asymptotic to these self-expanding
solutions at the non-regular points. This observation informs the approach of
[lmanen-Neves-Schulze. Indeed they ‘regularise’ a non-regular network by cut-
ting out non-regular points, and replacing them with regular self-expanders at
a scale s, which are asymptotic to the non-regular removed point. For each of
these regular networks, the existence theory of Mantegazza-Novaga-Tortorelli ap-
plies, and we get a regular solution of the network flow existing for a short time.
Moreover as the scale s goes to zero, the regularised initial conditions converge
to the original non-regular network. Ilmanen-Neves-Schulze were able to estab-
lish uniform curvature estimates on this family of flows as well as a uniform lower
bound on the existence time, allowing them to pass to a limit of flows to establish
the existence of a regular flow that attains the non-regular initial condition in a
suitable sense.

The approach taken here mirrors this exactly. We take a compact Lagrangian
L with a singularity at the origin which is asymptotic to a pair of transversally in-
tersecting planes P = P;+ P,. Work of Lotay-Neves [39] and Imagi-Joyce-Oliveira
dos Santos [33] establishes the existence of a unique zero-Maslov Lagrangian self-
expander Y which is asymptotic to P. We cut out the singularity of L and glue
in a piece of v/2s¥ to form a smooth Lagrangian L® where s > 0 is small. Stan-
dard short time existence theory for smooth compact initial conditions implies
the existence of smooth flows (L7)o<i<r, with Ts > 0 and Lj = L*. We want to
pass to the limit s \, 0, but since the maximum curvature of L* scales like s/,
the lower bound on T guaranteed by the short time existence theory scales like
s, and hence inf, Ty, = 0.

We therefore seek to establish a uniform lower bound on 7§ along with uniform

curvature estimates on (L7) away from the singularity. We may then use the
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compactness theorem of Section 4.4 to pass to a limiting Brakke flow, which the
curvature estimates then imply is in fact smooth. To do this we prove two key
results. The first is a monotonicity formula for a geometric quantity that should
be thought of as a primitive for the self-expander equation. This allows us to show
that the glued-in sections of L; evolve like the self-expander, remaining close in
an L? sense on a large set of times. The second key component of the proof is a
stability result for self-expanders, which says that if the solution remains close to
the self-expander in L2, then it is actually close in a stronger C%* sense. These
two results combined allow us to show that for a uniform short time, the solutions
L remain locally C1® close to the self-expander. This in turn implies uniform
estimates on the Gaussian density ratios, which combined with Theorem 4.2.6
implies uniform curvature estimates near the origin. We also make use Ecker-
Huisken style estimates for higher codimension flows which follow from work of
Wang [58, 59] to control the curvature of the flows L away from the origin. These
combined with the compactness theorem for Brakke flows are enough to establish
Theorem 5.1.1.

The organisation of this section is as follows: In Section 5.2 we derive evolution
equations for relevant geometric quantities and prove the aforementioned mono-
tonicity formula. In section 5.3 we prove the stability result for self-expanders.
In Section 5.4 we prove the main technical theorem, which establishes uniform
Gaussian density ratio bounds near the origin. In Section 5.5 we prove Theorem
5.1.1. Section 5.6 contains the construction of the approximating initial condi-
tions. Finally Section 5.7 contains miscellaneous technical results, including the

high codimension Ecker-Huisken style curvature estimates.

5.2 Evolution equations

In this section we calculate evolution equations for various geometric quantities
under the flow, including the Lagrange angle, primitives for the Liouville form,
and the backwards heat kernel. From these evolution equations we can then
establish the monotonicity formula that plays a crucial role in the proof of the

main theorems.

Lemma 5.2.1. Let (L;)o<i<r be a Lagrangian mean curvature flow in C*. The

following evolution equations hold.
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(i)

where 0, is the Lagrangian angle for L;. Note that since only derivatives of
0; appear here, this does not require the assumption that the flow is zero-
Maslov.

(7i) In an open set where the flow is zero-Maslov and exact with 5; a primitive

for the Liouville form,
dp
— = AB; — 20,.
I B t

(iii)

2

(v —x)*
10($0,t0)'

i @o—a)”
2(to — 1)

dp zo,t 7
<(d;0) + Ap(fco,to)> - |H|2p($o,t0) = -

Remark 5.2.2. In particular, from part (iii) we have

dp(z,, —
<(d;t0) + AP(%JO)) - |H’2p(zo,t0) <0

Proof. (i) Differentiating the holomorphic volume form € and using Cartan’s

formula we have

dQ . .
- = Lat= d(H Q) = d(ie”V8,.voly,)

= ie"d(Vh,avoly,) — e df, A (VO voly,)
= ie"div(V,)voly, — e df, A (VO,voly,),

where J denotes interior multiplication. On the other hand

i d

) L df ood
E — % ( Zetvo]Lt) = ielet—tvolLt + ezethOILt.

dt dt

Comparing real and imaginary parts we have (i).
(ii) Using Cartan’s formula again and denoting the Liouville form by A;, we

have

d ; 3}
d (f;) = L\ = d(HoN) + Had),

= d(H_)\) + IV, 2w
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= d(H \y) — 2d6,.

Hence

d
<dﬁtt - HJ)\t ‘|‘ 2975) =

By possibly adding a time-dependent constant to 3; this implies

d B
dﬁtt — H.)\ — 20,

Hence it only remains to show that H_\, = AS,. We first show that V5, = (Jz)7.

Indeed we have df; = \;, thus for a tangent vector 7
(VB 7) = dBy(1) = M(7) = (Ja, 7) = ((Jx)T, 7).

With this in hand we now choose normal coordinates at a point x, and denote

the coordinate tangent vectors by {0i,...,0,}. Then we calculate

ViV,iB = (Vi(Jx)",0;) = 0:(Jx,0;) — ((Jx)", D5, 0;)
= (J0;,0;) + (Jx, D.0;) — ((Jx)", Dy,
= w(9;, ;) + ((Ja)*, Dy, 05)
= (Jz, hij),

9;)

where h;; is the second fundamental form. Taking the trace of each side we have
Aﬂt = <J.T, ﬁ> = ﬁJAt.

(iii) We may assume without loss of generality that o = 0 and ¢, = 0, and we

will suppress the subscripts of p. We first calculate

o0 _( n_laP op i Fp (5 o
a p oxt 2t’0 Oxidxd  \ 2t 412 P

Then we have

n+k 82

ap .. ( n |z?
g TAvDp) = <_2t “ae )Pt 2 g
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B n |$|2 n+k :L‘i:Ej
—< o 4t2>p+”21 T )

(i BPY L n +|T!2 et
T\ T T )PP T e P T T e

where p” denotes the matrix of the projection onto T, M. We therefore calculate

d _Op - .
(dt + A) P= 2 + (Dp, H) + div(Vp)
a —
= %P 4 Qiv(Dp) + 2(Dp, H)

ot
o 2 12
div(Dp) H— — H
6t+ iv(Dp) ‘ Pt Pt p
L 2
T
H— — H
‘ 5 p+|H?p,
which establishes the claim. O

Remark 5.2.3. From the above evolution equations we see that both the zero-
Maslov condition, and local exactness are preserved by the flow. Indeed that the
zero-Maslov condition is preserved follows easily, and for local exactness we ob-
serve

dX\

@ R

(HJ/\t) + H_Id)\T

d
d(H N\ + JV,22w
d(H .\ — 2d6;.

So by the fundamental theorem of calculus we have
td\g
M=ot [ Sa
0o ds
where the right hand side is exact if Ao is.

Let ¢ be a cut-off function supported on By with 0 < ¢ <1, ¢ =1 on By and
the estimates |D¢| < 2 and |D?¢| < C. We then have the following lemma.

Lemma 5.2.4. Suppose that (L;) are exact in Bs and define oy = [ + 2t0;.
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Then

d .
%/L qbozf,od,u < —/L ¢|2tH—a:H2pd,u—|-C ozfpdu.

Ltﬂ(Bg\BQ)

where C' = C(9).

Remark 5.2.5. Note that it follows from Lemma 5.2.1 that

d

@O&t = Aﬁt — 2915 + 2015 + QtAHt == AOét.

This is the motivation for why we might expect oy to satisfy some sort of mono-

tonicity formula in the first place.

Proof. We calculate

d 0
(d'[; - A) (b = 8? — le.D¢ = —AR?nqb -+ tr(TL)J_.DZQS S 0133\32,

where 1p,\p, denotes the indicator function on Bj \ Bs. Then

d d d
(dt - A) ($a) = ¢ (dt - A) o? + a? (dt _ A) 6= 2(Vo, Va?)

d
< 2¢ay <dt - A) oy — 2(/5|V04t|2 + 0045133\32 - 40‘t<v¢7 VOét>-

Using Young’s inequality we estimate the last term on the set {¢ > 0} as follows

4|DoP?

—40,(V ¢, Vay) < 4|Do||ay||Vay| < ¢|Vay|* + a? < ¢\Vat\2+0at2]133\32,

where we used that Dol
D) < 2max |D%¢| < C.

This is true of any compactly supported smooth (or even C?) function (see [32,

Lemma 6.6] for a proof). Thus we arrive at

d
(dt — A) qbatQ S —¢|Vozt|2 + CatQJ]‘BS\BQ‘
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We now just differentiate under the integral and use Green’s identity to get

(ba
dt/ pai pdp = / ——L + pof tdt — |H|*¢a2pdu

a? d -
—/ ¢a?Ap pA(pay) du+/ ¢ ) +¢a3£— |H[*¢ai pdp

—/ ( —A) (paf) + ((jt +A> p— |ﬁ|2p> paidu

—/ op|V o] du+0/ a;pdj,

Ltﬂ Bg\Bz)

Since Vay = VB, + 2tV0, = Jot — 2tJ H we are left with precisely the desired
inequality . O]

5.3 Stability of self-expanders

In this section we prove a dynamic stability result for Lagrangian self-expanders.
More specifically we show that if a Lagrangian submanifold is asymptotic to some
pair of planes and is almost a self-expander in a weak sense, then the submanifold
is actually close in a stronger topology to some self-expander. Let P, P, C C" be
Lagrangian planes intersecting transversally such that neither P, + P, nor P, — P,
are area minimising. We denote by P := P; + P,. We will need the following
uniqueness result, proved by Lotay-Neves [39] in dimension 2 and Imagi-Joyce-

Oliveira dos Santos [33] in dimensions 3 and higher.

Theorem 5.3.1. There exists a unique smooth, zero-Maslov class Lagrangian

self-expander asymptotic to P.

The stability theorem is proved by a compactness argument, and relies on
Theorem 5.3.1 to get a contradiction. This is the main missing ingredient in
generalising the work of this chapter to singularities asymptotic to other com-
binations of intersecting planes. Much of the analysis does not rely specifically
on the fact that the singularity is asymptotic to two transversally intersecting
planes. If Theorem 5.3.1 could be generalised to other combinations of planes
there is hope that a corresponding short time existence result could be proved.
In fact, it might not be necessary to have the full power of a uniqueness state-
ment, rather some sort of isolatedness theorem should suffice. For now however,

whether such theorems can be proved remain challenging open questions.
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Before stating the theorem, we introduce what it means for two manifolds to

be e-close in Ch.

Definition 5.3.2. Given an open set U C R"* and two n-dimensional subman-
ifolds > and L defined in U, we say that ¥ and L are 1-close in CY*(W) for any
W C U with dist(W,0U) > 1 if for all x € W, By(z) N X and By(z) N L are
both graphical over some common n-dimensional plane, and if uw and v denote
the respective graph functions then ||u — v|j1o < 1. We then say that ¥ and L
are e-close in CY(W) if e7'S and e 'L are 1-close in e 'W for any W with
dist(e7 "W, e~ 1oU) > 1.

Theorem 5.3.3 (Stability theorem). Fiz R, r, 7 > 0, a;, g < 1, and C, M < oo.
Let 3 be the unique smooth zero-Maslov Lagrangian self-expander asymptotic to
P. Then for all £ > 0 there exists R > R, n, v > 0 each dependent on ¢y, €, r,
R, 7, a, C, M and P such that if L is a smooth Lagrangian submanifold which

is zero-Maslov in Bg and
(i) |Al < M on LN B,

(ii) For allz and 0 <r <7
/Lp<x,o>(y, —r*)dH" < 1+&

(1ii) L satisfies
/mB_ \H — ot PdH <, (5.3.1)
R

(iv) The connected components of L N A(r,R) (where A(r,R) := By \ B,) are
in one to one correspondence with the connected components of PN A(r, R)

and

: —|z|?
dist(x, P) < v+ Cexp c )

forallxz € LN A(r, R);
then L is e-close to X in CY*(Bp).

Proof. Seeking a contradiction, suppose that the result were not true. Then there
would exist sequences v; N\, 0, ; \, 0, R; — oo and L; such that each L; is a

smooth Lagrangian submanifold of C" that is zero-Maslov in Bp,, satistying
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(1) |A"

< M on L; N Bg,,
(2) Forallz and 0 <r <,

/L‘ P(z,0) (Y, —r?)dH" < 1+ ¢

(3) L; satisfies
| - atpan <,
LiNBg,

(4) The connected components of L;NA(r, R;) are in one to one correspondence

with the connected components of P N A(r, R;) and

]2
dist(z, P) < v; + Cexp ( |C'$| )

forall x € L; N A(r, R;),
(5) L; is not e-close to X in C'*(Bg,).

By virtue of (1), (4), and a suitable interpolation inequality, it follows that for
some p > 0, outside of B,, L; and ¥ are both £/4-close to P in C*. Hence, in
order that (5) is satisfied, we conclude that for large i, L; is not e-close to ¥ in
Ch(B,).

On the other hand, by (1) and (2) we may extract a subsequence of L; that
converges in C% for all o < 1 to some limit Ly, a CV! zero-Maslov Lagrangian
submanifold. The estimate (2) passes to the limit and tells us that L., has unit
multiplicity everywhere, and bounded area ratios. Since L, is C1! we can define

mean curvature in a weak sense, and (3) implies
/ \H — ot 2dH" = 0.
Loo

By standard Schauder theory for elliptic PDE, this immediately implies that
L, is in fact smooth and satisfies the expander equation in the classical sense.
Consequently L. is a smooth, zero-Maslov class Lagrangian submanifold, and (4)
implies that L., is asymptotic to P. Theorem 5.3.1 then implies that L., = X,
which contradicts (5). O
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5.4 Uniform Gaussian density ratio bounds

Suppose, as in the previous section, that P := P, + P is a pair of transversely
intersecting Lagrangian planes such that neither P, + P, nor P, — P, are minimis-
ing, and that X is a zero-Maslov Lagrangian self-expander asymptotic to P. For
the purposes of this section we assume the existence of an approximating family
(L®)o<s<c of compact Lagrangians, each exact and zero-Maslov in B, satisfying
the following properties. The existence of such a family will be established in

section 5.6.

(H1) The area ratios are uniformly bounded, i.e. there exists a constant D; such
that

H"(L* N B,(x)) < Dir" for all » > 0, s € (0,¢], and for all z.

(H2) There is a constant Dy such that for every s and z € L* N By
10°(2)| + [8°(2)] < Dy(|zf* + 1),
where 6% and 3° are, respectively, the Lagrangian angle of L* and a primitive

for the Liouville form on L?®.

H3) For any a € (0, 1), the rescaled manifolds L* := (2s)~Y2L* converge in C>*
y g

loc

to X. Moreover the second fundamental form of L* is bounded uniformly

in s and without loss of generality we can assume that

lim (6% + 5°) = 0

s—0

locally on L*. (Note that L* is exact in the ball By(25)-1/2 s0 we can make

sense of 3* in the limit.)

(H4) The connected components of P N A(rgy/s,4) are in one to one correspon-
dence with the connected components of L* N A(rg/s,4), and each compo-

nent can be parametrised as a graph over the corresponding plane P;
LP N A(rov/s, 3) C{x +us(z) |z € PN A(rovs,3)} C L° N A(roy/s, 4),

where the function us: P N A(rgy/s,3) — P+ is normal to P and satisfies
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the estimate
|us(z)] + [z ’vus(x)‘ + |$|2|vzus(x)| < Dy <|x|2 + \/236—b\$l2/25) 7

where V denotes the covariant derivative on P, and b > 0.

We will denote by (Lj):cjo,7,) & smooth solution of Lagrangian mean curvature

flow with initial condition L*. For x, € R*® and t > 0 we define

= = 1 |7 — ao|?
(I)(xo, t)(x) = P(x0,0) (x, _t) = (47Tt)“/2 exp <_4t
We introduce a slightly modified notion of the Gaussian density ratios, which

we will continue to refer to as the Gaussian density ratios, of Lj at xy, denoted
©7(xp,r) and defined as

1 2 2
(g, r?)dH" = / e~ lTmoPAT (1), (5.4.1)
LS

s (4mr2)n/?

©;(xo, 1) ::/

L

defined for ¢ < T,. The monotonicity formula of Huisken tells us that

@f(l’o, T) = @S(x(h l+ 7”2, T) < @S(x0> l+ Tza p) = / CI)(:E07 t+ T2>dHn)
t+'r27p2

for all p > r. In particular choosing p? =t + r? we have
O; (zg, 1) < / (g, t + r*)dH".
LS

We also define I
oL
2(s + 1)

We will denote by (:)f(xo, r) the Gaussian density ratios of (L), that is

(:)f(xo,r) ::/i O (xg,r)dH".

s
t
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One of the primary reasons for modifying the Gaussian density ratios is that our

new ratios behave well under the above rescaling. Indeed we can calculate

0 (z0,7) = O} | o, ——~ .
V20s+1) /205 + 1)
The primary goal of this section is now to prove uniform bounds on the Gaussian

density ratios of L, which we formulate as the following result.

Theorem 5.4.1. Let ¢y > 0. There are sg, dg and T depending on Dy, Dy, D3, 3
and ro such that if
t <8, 2 <7t and s < so,

then
@f(:):o,r) S 1+80

for every xy € By.

We start by proving estimates like the one in the above theorem hold for a
short time or far from the origin. Geometrically speaking this should be expected.
Away from the origin the L?® either coincide with the original Lagrangian L, or we
are in the graphical region of hypothesis (H4) where the L® are close to planar. On
the other hand, globally the maximum curvature of L?, provided s is sufficiently

1/2

small, is proportional to s/, so one expects control of the Gaussian density

ratios up to a scale proportional to s.

Lemma 5.4.2 (Far from the origin estimate). Let ¢g > 0. There are 6; > 0,
Ky < 0o such that if r? <t < 6; and s > 0, then

O (xg,7) < 1+ &,

for all o € A(Kyv/2t,1).

Proof. We first claim that there is a Ky < oo such that if yo € R*" has |yo| > K,

then for any A > 0 and s we have

O(yo, 1)AH" < 1+ £0/2.
/A(Lsnt<o>> (0, A" < 1o/

Indeed if this were not the case, then there would exist sequences y;, A; and s;
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with |y;| — oo such that

/ Oy, )AH" > 1+ /2. (5.4.2)
Xi(L5iNBs3(0))
First we note that A\; must be unbounded since, for some universal constant C'

we have

L il /8 32/ gqyn

Dy, DAK" < [
(v, 1) Ai(L#inBs3(0)) (4m)"/2

1
< 6—\yi|2/8)\n/
>~ ] L%NBs (47-(-)71/2

< CAPe WP /34X n (L5 By (0)),

<D;3"

/Ai(LSiﬂBg(O))
69>\’2/4d7'ln

so it is easily seen that if \; were bounded then (5.4.2) would fail for large i. Next
from the estimate (H4) we have that

for every x € A(rov/2s,4) and hence
Al <C 1+ L a2
J— \/%

on By N L%, since on B, s; we have |A] < C(2s)7"/? where C is a curvature
bound for . We rescale and define

A~

Li:=NL% o=\,

so that on [jz we have the estimate

A < f (1 + \j_e—beQ/%?Si) = C (N 4oy et e
i S5

Consequently |A| — 0 uniformly on compact sets centred at y;, so it follows that

locally L;— y; converges to a plane, but this contradicts (5.4.2).

We next observe that (H1) ensures that we may choose d; > 0 small enough
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such that for any zo € B1(0) and | < 24/5; we have
/ (g, [)AH" < 0/2
Ls\Bs3
By the monotonicity formula we have that for any r2,¢t < 6,

CHEAND §/ ®(xg,r* 4 t)dH"
LS

— ®(zg, 7> + t)dH" + ®(z0,7° + t)dH"

Ls\Bsg L°NB3

§€0/2+/ ) $,1 dH"
(r24t)~1(LsNB3) r2 4+t

<1l+¢g

provided that |zg| > Kyvr? +t, so imposing the additional requirement that
r2 < t this gives precisely the desired result. O

Remark 5.4.3. We observe that increasing Koy will only strengthen the hypothe-
ses, and so we may do so freely if necessary without changing the conclusions.
This will be important in the next lemma, and also in the proof of the main

theorem where we will assume that Ky is at least 1.

Lemma 5.4.4 (Short-time estimate). Let €9 > 0. There are s; > 0 and ¢, €
(0,1) such that if s < sy, > < @15 and t < qus then

Oi(x,r) <1+ e, (5.4.3)

for all x € By.

Proof. Fix a € (0,1) and let ¢; = ¢1(2, €0, @) be as in Lemma 5.7.2. We may
assume without loss of generality that ¢z < 1. By Lemma 5.4.2 we need only
prove the estimate for ¥ € By . We fix a € (0,1) and seek to apply 5.7.2
with R = Koy,/q1 + 1, which we can assume is at least 2 by increasing Ky, and
the rescaled flow L, := (2s)7Y/2L3,,. This is a mean curvature flow with initial
condition L*. By (H3) we know that L°* — ¥ in C;%. In particular, letting

e = e(g9, 2, ) from Lemma 5.7.2, if s is small enough we can ensure that Lfis
e-close to X in C"*(Bg(0)). The conclusion of Lemma 5.7.2 then says that for
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r?,t < ¢ and © € By, /4 we have
O (x,r) = / O(z,r*)dH" = / ®(2sz,257*)dH™ < 1 + &,
Lg St
or in other words

Oi(x,r) <1+ e,

for all r?,t < ¢s and = € By, vZsq- However since ¢ < ¢s this holds for all
S BKO\/Tt ]

The next lemma shows that in an annular region, and for short times, we
retain uniform control on both the distance to P and the Gaussian density ratios.
This follows primarily from (H4), since L*® in this region is graphical with good

estimates, and hence well behaved.

Lemma 5.4.5 (Proximity to P = P, + P). There are constants Cy, and ry such
that for any v > 0 there are so,d9 > 0 such that the following holds. If s < s9

and t < 0y then we have the estimate
dist (o, P) < v+ Cre /S yyo e L0 A(ry, (s +£)~Y8),

and if in addition r < 2, then

£
O3 (yo, ) <1+ 50 YU Vg€ A, (s + 1)),

Remark 5.4.6. Note in particular that r1 does not depend on v, which will be
important later.

Proof. We consider t < 05 and s < sy (both d9 and sy to be chosen) and define

N = 7[/8 )
2(s + 1) (s +t)

Clearly [ < 1/2 and also from (H4) we have that if sy, d5 are chosen small enough,
then XY N A(rg, 3(s +t)~/®) is graphical over PN A(rg, 3(s +1)~'/8). Moreover
if v is the function arising from this graphical decomposition then we have by
scaling the estimate of (H4) that

= =2
[0 (@) |+l [V ()] + 2V v ()]
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(m|x|2 ( V2s )) e—2b(s+t)|x|2/23)

2(s+t
< Dy (Y2l Ofal? + )

Let ¢ > 0 be a constant that will be chosen later. If so(Ds, rg, ¢) and 62(Ds, 19, ¢) >
0 are small enough and ry(P,c) > max{ro, 1} is chosen to be large enough then

we can ensure that

vea(@)] + el Foe(@)] < Dy (V20 + Ol 4 ) <2 (5.0)

on A(ry,3(s+t)71/8). Indeed z € A(ry, 3(s+t)~/®) implies that |z|> < 9(s+t)~1/4,
and so /2(s +t)|z|> < 9v/2(sy + §3)'/* can be bounded in terms of s, and ds.
From now on we fix some yo € Li N A (3r1 +1,(s+ t)_l/s). Since yg4/2(s + t) is

a regular point of (Lf), the monotonicity formula implies
1< O3(oy/20s + 0, VA = [ @y, DAR" = T+ + K,

where

1= . B(yo, [)AH,

¢ )\BS(ert)*l/S
Ji= / ® (o, )AH",
2(DNB,,

K = ) dH™.
S)NA(r,3(s+t)—1/8) <y0 )

We first estimate I. If |z| > 3(s +¢)~/® > 3|yo| then

2 2 2 2 QWQ s |z 2 2
[z = yol” > |2]° = 2]z[|yo| + |yol® > |2|" — —— + [wo]” = 5t Yol
SO
1 1 2 2 2
Dy, 1) = —lz—yol?/4l ~ e~ 1vol*/4l o =l2|*/12L _ gn/2 ~|yol* /4l 0, 31).
(yO ) (47Tl)n/2 (4’/Tl) € € ( )
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Therefore by choosing C; = C}(D;,n) we can estimate

I = D (yo, [)dH" < 3"/ Iwol*/4 / ®(0, 3))dH"

Z(s,t)\B3(5+t)71/8 E<5¢>\B3(s+t)71/8

< 3"/26—'?/0'2/“/ B0, 1)dH"
(31)—1/22(s,t)

2
S Cle ‘y()l /Cl’

since [ is bounded independent of s and ¢, and the estimate (H1) is scale invariant,
so in particular is satisfied by (31)~1/2%(s1).

Next we estimate J. Similarly as before we find that for |z| < < |yo|/3 we
have
2 2 vl
|z = wol” = [ + =
3
Thus

B (yo, 1) < e P12 (0, 1) on B,,,

hence by possibly increasing C' if necessary we have

J= / By, [)AH" < e~lnl*/12 / B0, ))AH" < Cre /01,
2(DNB,, s(DNB,,
Finally we deal with K. We denote by a; the orthogonal projection of 39 onto P;
and by b; the orthogonal projection of g onto P-. We suppose without loss of

generality that
dist(yo, P) = |b1].

We will also denote by £ the component of £ N A(ry, 3(s + t)~V/8) that is
graphical over II; := P,N A(ry,3(s+t)~'/®), and by vf&t) the corresponding graph
function. Since P, N P, = {0} it follows that for some ¢ = ¢(P) > 0 we have
that |by] > clyo|. Notice that since |bg| < |yo| we have that ¢ < 1. Suppose that

x € ng’t), and denote by z’ the orthogonal projection onto P. Then we have

Yo — @ = laz + b2 — 2" — v, (&)]* = laz — &' + [b2 — v ().

Moreover by (5.4.4), if r; is chosen large enough (in particular larger than 1),

clyol

< 7
- 2

[0l (@] <

N O
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SO
C‘yo|
2

Consequently, denoting by g¢;; := 6;; + Div(z&t) . D]-v(z&t) the induced metric on the

|ba — v (2")] > [ba| = [0, (") >

graph, we can estimate

J Bl D

1 —a—x’Q—b—UQS 22
- (dnl)/? eXp( — Juz i M) detlg)d=
I, (4mi)™

1
< Cle—<lwol?/161 /
= Py (dml)n /2

e ‘a2—$'|2/4ldl‘/
— 2/C
< Cle |y0‘ / 1,

where we used (5.4.4) to estimate the gradient terms arising in the surface mea-

sure. Combining this with the estimates for / and J we have that

a2
ICED DI 4

Increasing r; for the last time if necessary, we can ensure that

2
— 1
C’lexp< |g0| > < 3"
1

Therefore we have that

1 b — Uls 5
3 S /( ) (y0>l)dHn < OSupeXp ( |1(’t)|> )
= 4l

5 S
Therefore it follows that [by — v(, ,|?/4l is bounded on II; independently of [, s

and t, thus we can estimate

b1 — U(ls t)‘2 —|br—v! . |2/4l
TSC(l—e (s,t) ),
on IT; where C' is independent of s and ¢. Moreover because (D;v(, - Djv(, )

has non-negative eigenvalues we have that \/det(g;;) > 1, so we can estimate

/ ’U(ls,t) — b1|2 exp(—|z’ — a1|2/4l)d ,
I 41 (4rl)n/? *
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|U(ls t) b1|2 exp(—|a’ — a1]2/4l)
< — Xp — ’ d .. d !
- C/rh (1 © ( 4 (4ml)n/? etlgij)dz
/ exp(—|2’ — a1 |*/40) %et . / n
I, 4 l n/2 d gzg d ) y07 d7i
/ exp(—o’ — anf /4l)\/det( i)da’ — 1) 4+ Cy exp(—|yo|*/Ch)
. (4 l)n/2 Gij 1 Yo 1

exp(—|a’ — ai[?/4])
m (4rl)n /2

I
Q

IN
Q

<C

( det(gi;) — 1) da’ + Crexp(—|yol*/C1),

where we used (5.4.5). We have 1+ 2z = 1+ 2/2 + O(2?) and det(I + A) =
1+tr(A)+ O(|AJ?), which follows from the Taylor expansions for square root and
determinant, hence

n 1/2
detlgg) — 1 1+Z|Dwés,t>|2+0<rwzs,t)|4>) .

=1

IN

v’Ulst ’2 + O(’vv(ls,t)|4)

I
Q v3S.—

IA
<l\

|2
t)

where the last line follows from the fact that [Vu(, | is bounded on A(ry, 3(s +
t)~Y/%) by (5.4.4). Putting the above two estimates together we find

/ ’U(ls,t) — 51’2 exp(—|z’ — a1|2/4l)d ,
I 41 (4rl)n/2

Tl pORl — P/ 2
SCAJW“M (4rl)n/? da’ + Cy exp(—|yo|*/Ch).

Therefore since
[01]* < ([br = v{g | + [0fs 1y D? < 2101 — v, 01> + [0{n ),

we can estimate, by integrating both sides against (471)"/2exp(—|z’ — a1|?/4)

over 11

exp(—|’ — ar?/40)

O dz’ 4 Cy exp(—|yo|*/C1).

(5.4.6)
Note that here we used the fact that the integral of (471)™? exp(—|z’ — a;|?/4l)

over II; can be bounded below by a constant, on account of the fact that [ is

o < Cu [ (ol + [Toy)

141



bounded independently of s and ¢, and the outer radius in the definition of II; is
bounded below by 3(sy + 52)*1/ 8 which, by choice of s, and d5, we can assume
to be greater than 2r; say. Since b is also constant we rearrange to obtain the
above identity. We want to now control the integral terms on the right hand side.
First we observe that |a;| > c|yo| for some constant depending only on P. This
follows from the fact that we assumed y, was closer to P; than P, and hence lies
in some fixed conical neighbourhood of P;. Moreover for any 0 <[ < 1 we have

for any z, a; € R*"

2 1
20|z + a,|* + lz‘l = |z|? (4[ + 2b> + 2|a1|*b + 4bx - a;

1 1601 + 1 320%1
2 |af” <41 * 26) + 2 = si - 1661 + 1 arf”
jz[* | 2bjay|?
— 8l 16bl+1°
Furthermore for « € I1; we have |z| > 1, so by (5.4.4)
Vol < 22Vl < C ((s + )] + 7 21F)
Hence for some C} = C(Dy, D3, P) we have
—|2'—ay1|?/41 —|z’—a1|?/41
=1 2€ / n2 -2’12\ € /
i, ¥l T Jy, (G5 0P e72) arly
—|a’—ay1]?/4l
<Ci(s+t)+ C’l/ e_b‘w&dx’
- Rn (4rl)n/?
—[a’|? /4l
—b|z'4-a1|? € /
SC’l(s—l—t)—l—C’l/ne (47rl)”/2dx
'8l

—Jas?/C /
§01(5+t)+016 ! 1,/Rn (47Tl)"/2dx

<Oy ((s+1) + e wlren),

Here we used the fact that integrating |2'|? against (47l)~"/2 exp(—|2" — a;|?/4l)
over R™ can be bounded in terms of the scale [, which is itself bounded by 1/2.

Similarly, using (5.4.4) again, we can estimate

[l < Oy ((t+ 8)|a|* + 1)
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So an entirely analogous calculation establishes the estimate

) €—|x’—a1\2/4l

/H ’U(ls,t)’ de’ < ((3 + t) + e~ lvol /Cl) _
1

Therefore from (5.4.6) we have
b1 < Oy ((s+ 1) + el

so choosing s, and o depending on Dy, Dy, P,ro,v and b we have that for all

s < sy and ¢t < dy we have
|b1| = dist(yo, P) < v+ Cyelwl*/Cr

We next want to show that by possibly increasing 71, and decreasing s; and 47 if

necessary, that we also have the estimate

€
O] (yo,r) < 1+§+V

for any r < 2. We have

Ao 1 —lz =yl 0
@t(y[)?T) :AfweXp <47’2 dH

_ 1 e (—|x— \/2(s+t)y0|2) dH"

s (4m(2(s + 8))r2)n2 4r2(2(s + 1))

= 0;(/2(s + t)yo, /2(5 + 1)r).

Applying the monotonicity formula we have

@f(\/Q(s + t)yo, \/2(3 +t)r) < @8(\/2(3 + t)yo, \/2(5 +t)r2 + 1),

so we find, recalling that [ = ¢/2(s + t)

~ —|z —/2(s + t)yo|?
& (yo.7) < ! p< o = y2s )yO‘)dH"

= Joe An@s+ o2+ )2 P\ a2 1+ 02+ 8)

1 —|z — yol?
w0 (Am(r2 + )2 P ( Wi+ )
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= ®(yo, I + r?)dH™.
»(st)

Therefore by splitting up the integral as before and estimating exactly analogously

we have

12
O;(yo,r) < / D(yo, 1 + TQ)dH” + Chexp %ol
SIg) C,

—|z'~a1|?
</ eXp( 4(l+1”21) ) det(gdl’/—‘—c exp _’y0|2
= i, (4n(l + r2))n2V Y ! C

1

—|z'—aq|?
= eXP( EE) ) —|yol?
<1 0/ Vol 2 de’ + C 2
S G Vol gy de T Grese =5

_I‘T‘J_a1|2 2
2 P\ 4i52) —
ST+ C(s+)+Cp [ el i) >dx+CleXp< ol >

Rn (4 (1 + r2))n/2 Cy
Gt 0 [ el 2P (s57) do + Cyexp (10
= 1S 1 Rne (47T<l—|—7“2))”/2 X 1 eXp C’l .

We want to estimate the exponential terms and pull out an exponential factor in

la;| so we estimate

|z
2

I+r3)+1
2l N

S |x|28b
- 41 +1r?)
326%(1 + r?)
16b(1+12) +
|z 20]ay|”
8(I+1r2)  16b(1+1r?) +1
|z Jaa |?

- 8(l + 7“2) Cl ’

16b(1 + 12) + 1| 2

2ba, |* —
+ 2l 81+ 12)

2
1|a1|

where we used the fact that [ and r are both bounded independently of s and ¢.
Therefore putting this together we have

olal? /8(+r)

0% (yo, r) < 1+ Cy(s +t) + Cre P/ / da + Cye—lwl /0

re (47 (1 + r2))n/?
<1+ Cy(s+1t) 4 Crelwl/cn

Evidently an appropriate choice of ry, so and dy yields the required result. O]

The following two Lemmas show that we have additional control in annular
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regions, specifically on normal deviation, curvature, Lagrangian angle and the

primitive for the Liouville form.

Lemma 5.4.7. Let Ff: L°* — R*" be the normal deformation such that L =
Fp(L*). We also define Ff := (2(s + )" /2F¢ so that L = F(L*). Then there
exist ro, 03, s3 and K < oo such that if t < 03 and s < s3 then

15(35(%) — Fts(a:)‘ <K whenever ﬁg(x) cA (702, (s—+ t>71/8/4) .

Proof. By the proximity lemma 5.4.5 we may choose ry > 1, d3 and s3 such that
if t <93 and s < s3 then
Oi(x,r) <14¢q

for all r < 2,/2(s+t) and r € A (7”2«/2(3 +1),v2(s + t)3/8). Hence by White’s

regularity theorem (Theorem 4.2.6) we can find a C' such that

whenever Ff(p) € A (27'2 \/2(5 + 1), \/2(3 +t)(s + t)_1/8/2). Therefore, choosing
a larger r9 and smaller s3, 03 if necessary we obtain, by the fundamental theorem

of calculus,

F0) = Fi0)] < | =ds =20VA

whenever
Fy(p) € A(ra(2(s +1)M2, (2(s + 1) (s +1)71/5/4)

which establishes the result. O

Lemma 5.4.8. There are 4 > 0 and s4 > 0 such that for 0 < s < s4 and t < 04
A ()] + 167 ()| + |8 (x)] < Dy Vo e L;NA(1/3,3). (5.4.7)

Proof. The estimate is clearly true for ¢ = 0 by assumption (H2). Moreover, by
(H4) we can assume that for s sufficiently small, each of the L* is the graph of a
function with small gradient in the region A(1/4,4). Applying Lemma 5.7.1 we
find that L® remains graphical with small gradient in A(2/7,7/2) for some short

time, which implies that |67| < C for d, chosen small enough.

145



That |A7| is bounded follows from Lemma 5.7.1 and Corollary 5.7.4, since
Lemma 5.7.1 implies small gradient for a short time, which allows us to apply
Corollary 5.7.4 to get uniform curvature bounds for some short time in A(1/3,3).

Since |07] and |Af| are both bounded, we have from the evolution equations
of 37 (see Lemma 5.2.1) that

dp;
dt

< [(Jz, H)| +2/6;] < C.

Hence for some suitable short time, |3;| also remains bounded in A(1/3,3). O

The last of the technical lemmas in this section uses the monotonicity formula
of Section 5.2 to show that after waiting for a short time dependent on s, we can
find times at which the scaled flow L is close to a self-expander in an L? sense.
We later use this in the proof of the main theorem to get estimates on the density

ratios via the stability result.

Lemma 5.4.9. Let a > 1. Let q; be as given by Lemma 5.4.4, and set q := ¢/ a.
Then for alln > 0 and R > 0 there exist 65 > 0, s5 > 0 such that for all s < s
and qgs < T < 05 we have

1 aTl 5
S E— H — p-PdH dt <.
(a—l)T/T [meR| v AR

Proof. Fix R > 0, n > 0. Suppose s < s5 and ¢gs < T < d5, with 5 and s5 yet
to be determined. Furthermore, we set Ty := R?(s + aT') + aT. Throughout the
proof, we denote by C a constant which depends on a, R and ¢, but not on T" or

s. We estimate

1 aT .
—_ H — x> dH"dt
(a—l)T/T /~me}3| v [dH

1 aT n/2

ot [PdH"dt.

(5.4.8)

We can ensure R/2(s+t) < 2 if we choose s; and 5 small enough. Moreover
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on BR\/M we have

» B Edi
(To = t)"?poz (2,1) = (dmynz &P <_4(To—t)>

1 R?2(s + 1)
<_ AT - 1) ) ‘

Since Ty —t = R* (s + aT) + aT —t > R*(s +aT) > R*(s +1), it follows that

1 1
— /2 _Z
(T = 0" po(,1) > (o oxp ( 2) .
Hence we can continue estimating (5.4.8) using the localized monotonicity formula
of Lemma 5.2.4 (¢ denotes the cut-off function given in that lemma which is 1
on By and 0 outside of Bj)

C’ aT .
(5.48) < = / (5 + 1)~ 2/2(T, — 1)/? / 3l2(s + ) H — o [2po M dt
T Ls
_ C/aT(S+T>(n+2)/2(T _T)n/Z/ 185 + 2(s —i—t)(gs’Qp o dH
~—TJr 0 L3NA(2,3) ¢ e PoTo

C
+ s+ T)~ "2 (T, — T /L |87 + 2(s + T)071* o, AH".
T

(5.4.9)

Now using the localized monotonicity a second time we have the estimate

d
ai /L o185 + 2(s + t)0; > porydH" < C ) 185 + 2(s + )05 2 po. 1 AH™

LiNA(2,

SO
[ 0185+ 25+ T Ppomat” < [ 6185 + 2505 po 1, "
T 0

T
wC [ 1B 2+ 06 o mdH L,
0 JLiNA(2,3)
hence

(5.4.9) < —(s + T)~"™/2(Ty — T)"/? /L ¢|2s05 + B5|* po,ry dH"
0

aTl
+ 2 (s + T)~ D2y — )2 /O / S 2(s + )05 + B2 por, dHdE.

NIQNIQ

NA(2,3) |
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Now Ty — T < C(s + T, with C' depending only on R and a, so estimating the

terms in front of the integrals we have

C
(5.4.9) < / 12585 + 55l po.ry dH”

T(s+T) Jrg

C aTl
P — 2 s 512 n
! T(s+T) /0 /fmA(z,z) [2(s + )07 + B[ pory dH"dt

=: A+ B.
We first estimate B. Notice that by Lemma 5.4.8 we have
12(s + )67 + B7* < (2(s + 0)167] + 57)* < O((s + 1) + 1)%,

Hence, we can estimate

aT
B s C((ST—EsafT—i_ L / /L SMA(2,3) porydH"dl
aT
= C((;—ESG—?T—Fl / /smA(zs 2" po gy dH" dt
- C((STj(Lsaf )T;L - /o (To = 1)° /(To-t)l/z(LfmA(Q,:a)) =f' ol
9 2
- C((;%(_Sa—lj—?r;— : T tes[(l)l,apT] (To—t)~1/2(LFNA(2,3)) ol exp ( : 4| ) e

(5.4.10)

We note that Ty < (R*(1/q+a)+a)T = CT, Ty < C(s+T) and Ty > R*(s+aT)

SO we can estimate

z|?
5.4.10) < O(Ty + 1)*T, su x|te —|— dH"”
( )= Oy ) Ote[O,apT] (To—t)_1/2LfmA(273)‘ oxp 4

< O(Ty + 1)*T,

where we can estimate the supremum by a uniform constant because L; all have
bounded area ratios with a uniform constant. Moreover Ty < R*35(1/q+ a) + ads
so that by possibly decreasing d5; we can ensure that B < n/2.

We next estimate A,

C

<= 2505 + 5212 po 1 dH™dt. 5.4.11
< o T Jooo 2500+ B0 (5.4.11)
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First recall that if 5° is primitive for the Liouville form on some L°, then 3] :=
[72/3% is primitive for the Liouville form on {7'L*. From here on we surpress the
subscript 0 of the 3° and 6° since we only ever integrate over the manifolds L,

and we instead use a subscript [ to denote the rescaling factor of the 5°. We
define

s
[ :=4/2 T =
(s+T) o T
then
C(s+1T)
54.11) = 7/ 0° + B°2poaq dHdt
( ) T Jowosy |00° + 57" po—21,
<C |00° + 571 po—27, dH",
lil(LaﬁBg,)

since T' > ¢s, so we can absorb (s + T')/T into the constant. Define

F(s,T) = /

0_93_'_ s|2 _ dHn
1=1(L§NBs) | gl Poi-2To

Notice that from the definition of 7 we can find C' > 0 independent of 7" and s
such that [ 2Ty € [C~!, C]. We want to show that by possibly again decreasing s;
and J5, we can ensure F'(s,T) < n/2. Seeking a contradiction, suppose that this
is not the case. Then we can find sequences s; and 7T; both converging to 0 with
gs; < T; and such that F(s;, T;) > n/2. After possibly extracting a subsequence
which we don’t relabel, we may assume that ; 2Ty — T}. We split the rest of the

proof into two cases.

Case 1: Suppose that (after possibly extracting a further subsequence) we
have that o; — ¢ > 0. Then by (H3) we have

'Ly = Uil/QfJSi — o'/2%

in C1®, Therefore we have

lim F(T;,s;) = lim 0,0% Si12 o AH™
i—00 ( v 7'> i—00 0__1/2E(S)im'7133 | g + /Bli pO,li To
1 1
— lim o2 / ) 0% + 3% 2py 21, AH" = 0,
1—00 Loin(2s;)~1/2B3 T
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because |§% 4 (%

is bounded by Dy (1+4|2[*) on Byyg,)-1/2, which means that since
720, "y — o~ 'T; > 0 the contribution to the integral outside some fixed large
2 _ 0

locally, so inside this large ball the integral can be made as small as desired.

ball is small uniformly in i. Moreover by (H3) we have lim;_,o, |05 + (%

Case 2: Suppose now that after possibly passing to subsequence, which we
do not relabel, we have o; — 0. Then, with 7 defined as in property (H4) of the
family L°, we find

: S; Si |2 n
lim [ . |00 + 37 Po-2q, dH
=00 JI7Y(LSINBry ;) i
= lim ;0% Si12, o AH™
i—00 | ! T Bli | pO,li To

1/2%s;
o "Ly'NB, | oTs

= lim affs_ 0% + p*
i—00 Ly'NB, /5

2 n __
pO,oi_lli_lTodH = O,

because |§SZ + 3% 2 = 0 locally, and p is bounded. So to estimate lim; ., F'(T}, s;)
we need only control the integral in the annulus A(rg\/0;/2, 31;"). We first notice
that by (H4), provided i is large enough, I; ' L% N A(rg\/0:/2,3l; ") is graphical

over P, and if v; is the function arising from this decomposition we have the

estimate
i) + [ |[Voi(2)] + |2/ [V vi(2')| < Dy (Lfa!* + 07 2e 71200

In the graphical region, the normal space to the graph is spanned by the vectors
n; := (=Vvl,e;) for j = 1,...,n where ¢; denotes the vector in R” whose jth
entry is 1, and all other entries are 0, and vf is the jth coordinate of v;. Then given
an orthonormal basis for the normal space v1,...,v, we have v; = >7)_ | ajng,
where o, are fixed real numbers denoting the coefficients in the basis expansion

of v; in terms of the ny. It then follows that

| < O Kwmy)l,

j=1

where C' depends only on the ;. Now

(@, n) = {(2, vi2)), (= Vo], ¢)))
= (', Vo] (")) + o] (')

150



from which it follows that
2] < € (jusla)| + [V (@)

Therefore

e

=[] < C (ULle']* + 0;7%) . (5.4.12)

i
Using this estimate we can control ;' independently of i on the annular region

A(ror/oi/2,31;1) NI L%, Indeed suppose that x € A(rg\/oi/2,30; ") N7 L,
then there is a corresponding x' € A(rg\/0:/2,3l; )N P such that x = 2’ +v;(z").

Define
- TO\/EL/
V2 |

Note that x; of course depends on the original choice of x as well as i. We may

and ;= 2 + vi(2)).

now define a curve in ;' L* by setting
Y(t) ==} + t(a’ — a}) + via] + (2" — ).
By the fundamental theorem of calculus we can write
s s Ld
@) = By e + [ O ()t
o dt
1
< Bl + [ VB () W]t
and furthermore
Y (O] < |2 = 2| + [Vl |2’ — 2] < Cla]
SO

1
(@) < B + Clal [ Glel+ 1’ — 2 + 0}t
0

< Bi () + Cl|z? + 0).

Now 3/ (z;) = o; 35 (o, / *z;), moreover since |z;| is bounded independently of i or

the original choice of |z| we have from property (H3) of L*® that

lim Bsi(agﬂxi) + (581‘(0—3/21:7;) =0

i—00

151



uniformly in x. Thus

; Sifp ) — — i 0% (120 ) —
B ) = — i ) =

uniformly in z as 0% is bounded and ¢; — 0. Therefore we may bound the term

. (7;) by some sequence b; with b; — 0. Consequently we have the estimate
B @) < C (lal’ +0i|al) + b
on A(ro\/0i/2,31;71) NI L% ) hence

lim F(T;,s;) = lim 0,0 + [
i—00 (T:, 5:) 00 z;lLSmA(ro\/m,Sl;l)’ ' b

2 n
Poi=2Ty dH

= lim 16 2P -2y AH"

i—00 JIT LsiNA(ror /0 /2,311
< lim C(12 + o3 + bf)/ (J2]° + 3] + 1)pg agy AH" = 0,
1—00 - 7

e
1

where we again used the fact that {; Ty — T} > 0, so that outside of some large
ball the contribution to the integral is very small. This limit being zero is a

contradiction, so we are done. L]

We may now embark on the proof of Theorem 5.4.1. Changing scale, to prove
the main theorem it would in fact suffice to show the following (which is very

slightly stronger due to the bound on the scale of the density ratios),

Theorem (Rescaled main theorem). There exist sg, dg and T such that if t < &,
r? <71 and s < sq, then
éf(mo,r) <1+4¢g

for all zo with |zo| < (2(s +t))~Y/2.

Let ¢; be defined as in Lemma 5.4.4, and recall that ¢; < 1. If we set 7 :=
¢1/(2(q1 + 1)), then the rescaled version of Lemma 5.4.4 implies

Lemma (Rescaled short-time existence). If s < sy, t < 15 and r* < 7 then

O;(yo,m) < 1+ ¢

lyol < (2(s + 1)) V2.
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Similarly the rescaled Lemma 5.4.2 tells us that

Lemma (Rescaled far from origin). If r* < 7 and ¢1s <t < §;

O;(yo,m) < 1+ ¢

whenever Ko < |yo| < (2(s 4 )72,

Thus to prove the rescaled main theorem, it suffices to show that for appro-
priately chosen sg, 6y and 7 the following holds true: if r? < 7, s < 59, t < &y and
t > ¢1s then

O;(yo,m) < 1+ ¢

whenever |yg| < K. This is what we now show.

Proof of Theorem 5.4.1. For each s we define
T, := sup {T | O3 (yo,7) <1+ forall 2 <7, t < T, |yo| < Ko}.

We now claim that we can find dg > 0 and sg > 0 such that T, > d, for all s < sg.
Indeed, with 7 = ¢1/(2(¢1 + 1)) as above, we choose a > 1 with a < (1 +27). Let
Cy be the constant of White’s local regularity theorem (Theorem 4.2.6), and set

C = COM. (5.4.13)
¢(a—1)

We next let r3 := max{rg, 1,79, 1}, where ro, 11, and ry are as in, respectively,
the construction of the approximating family, Lemma 5.4.5, and Lemma 5.4.7.
Let R := /T + 2¢q; Ky + r3 and note that R > 2. Next fix a € (0,1) as in the
proof of Lemma 5.4.4, and ¢ = £(X, &g, ) as given by Lemma 5.7.2. We apply
the stability result, Theorem 5.3.3 with R = R; r = r3; C' = max{C},C} the
constants from Lemma 5.4.5, and the construction of the approximating family
respectively; M = C; 7 = 7; ¥ = ¥ and ¢ = . Thus we obtain R > R, n > 0 and
v > 0 as in the theorem. Apply Lemma 5.4.9 with n = n/2 and R = R. This gives
s5 and d5 such that the lemma holds. Next apply Lemma 5.4.5 with v to obtain

so and do. We now let s := min{sy, sq, 3, S4, S5} and g := min{dy, 9z, 03, d4, 5}
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We finally possibly decrease sy and g slightly to ensure that

(S() + 50)_1/8 2 2R

This will ensure that in the annular region A(r3, R) we have all of the estimates
of the intermediate lemmas of this section. We now claim that these sy and d
are the required constants. Specifically we claim that for all s < sq we have
T, > dp. Indeed, suppose that this were not the case and that for some s < s
we have T, < dg. Our goal is to show that the hypotheses of Theorem 5.3.3 are
satisfied by L¢ for some ¢ close to T}, so that we can conclude L? is C** close to
Y. Lemma 5.7.2 will then give density ratio bounds for times past T, resulting
in a contradiction. To this end we define T' := T /a, then since T' < T we have
for all ¢t € [T, Ty)
O3 (z,r) <1+ &,

for all 72 < 7 and x € Bp,. In fact, as has already been observed, the same is
true for all |z| < (s+t)"/8, so in particular for all || < 2R. Let L denote the
Lagrangian mean curvature flow with initial condition L. Let o2 = 2(s+ 1),

then we can write L = o~ 'L5. Then we may write L; as

V2T + s+ 02)
L

_ES:U_ILS o =
l T+o2l 2(T-|—5)

%“+s+o2l =Vi+ 2l~§“+021'

This implies the density ratio control
O (z,r) < 1+ e,

for all [ such that T + o2l € [T,T;), r* < 7 and © € B,p. By White’s local

regularity theorem (Theorem 4.2.6) we get curvature bounds of the form

N C
|Als|§—0 [ <7, on Bp,

Vi

or, scaled back to the original scale this means

Co

As| < :
’t‘—m

(5.4.14)
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on B, for all t < T, with T <t < T +2(s +T)7 = (1 +27)T + 275. Notice in
particular that
Ty =aT < (1+427)T + 27s,

so the above estimate always holds up to time T,. Let ¢ty := T(a + 1)/2. Then
from (5.4.14) we see

C O() \/— C 2( a+3) C 2(a+3)

—1 a—1

A< =T = Ja-1T ¢<a+3)T_V2t0+T)

Recall that T'> ¢;s and ¢; < 1 so

2(a+3) ~
TN e s i
\/Q(to + q15) \/Q(to + 5)

on B, j, where C'is defined as in (5.4.13). Similarly, if ¢ > 0 is such that ty+t < T,

then
Cy

Cov/2 C
|At0+t — S .
Vig+t =T ,/(a—1)T+t V2(to +t+ 5)

In other words, for each t € [tg, Ts) we have

A< Y B,

2(s+1)
which implies that for each t € [to, Ts) we have
|A5| < C  on Bp.

This means that L? satisfies condition (i) of Theorem 5.3.3 with M = C' and R =
R for every t € [to, Ts). Next, applying Lemma 5.4.9, we may select t; € [to, Ts)
with
/ |H — 2 2dH" <.
L: NBp

So L, also satisfies condition (ii7) of Theorem 5.3.3. Condition (iv) of Theorem
5.3.3 holds for Efl by Lemma 5.4.5, and condition (i7) holds by definition of Ty
as t; < T,. Hence Theorem 5.3.3 implies that ifl is e-close to ¥ in C'*(Bp).

Redefine ﬁf to be the Lagrangian mean curvature flow with initial condition Zfl.
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As before we know that we can write

Li=v1+ 2lf’f1+2(s+t1)l'
Then Lemma 5.7.2 applied to if says that
Oi(wr)<l+e P I1<q

for |z| < R—1. Since R > R = /T + 2¢1 Ko+ 3 and r3 > 1, this means that the
same is true for |x| < /T + 2¢; Ky. Rescaling, this is equivalent to

s xr r
hit2(s+ta)l <\/1 +20 1+ 2

>§1+€07

for r2, 1 < ¢; and |z| < /T + 2¢; Ky. Or in other words

Oi(x,r) <1+ e,

for r* < qi/(1+2q) =7, |z| < Ko and t; <t < (14 2q1)t1 + 2¢15. However,
(14 2q1)t; + 2q1s > aty > aT = Ty, which contradicts the definition of Ts. O

5.5 Short-time existence theorem

In this section we prove the following short time existence result using Theorem

5.4.1 and the results of the previous section.

Theorem 5.5.1. Suppose that L C C" is a compact Lagrangian submanifold of
C™ with a finite number of singularities, each of which is asymptotic to a pair of
transversally intersecting planes Py, + P, where neither Py + Py nor P, — Py are
area minimizing. Then there exists T > 0 and a Lagrangian mean curvature flow
(L¢)o<t<r such that as t \, 0, Ly — L as varifolds and in C32, away from the

singularities.

Proof. For simplicity we suppose that L has only one singularity at the origin.
The case where L has more than one follows by entirely analogous arguments.
Recall the one parameter family L® of section 5.4. Since each L? is smooth,
by standard short time existence theory for smooth compact mean curvature

flow, for all s € (0, | there exists a Lagrangian mean curvature flow (L$)o<i<r,
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with T, > 0. We claim that there exists a Ty > 0 such that T, > T; for all s
sufficiently small, and that furthermore, we have interior estimates on |A| and its
higher derivatives for all t > 0, which are independent of s. By virtue of Lemma
5.7.1, we can apply Corollary 5.7.4 on small balls everywhere outside By /3 to get
uniform curvature bounds outside of Bj /o up to time min{7}, 0} where 6 > 0 is
independent of s. Uniform estimates on the higher derivatives then immediately

follow by standard theory of parabolic partial differential equations.

To obtain the desired bounds on B;/; we use Theorem 5.4.1. Let 9 > 0 be
the constant of Brian White’s local regularity theorem. Then Theorem 5.4.1 says
that there exist sg, 6y and 7 such that for all s < s, t < §p, 7> < 7t and zy € By o
we have

O (zo,7) = O (wo, t +7%,7) < 1+ &0.

This implies that for all s < sg, t < dp and 72 < 7t we have ©%(zg,t,7) < 1+ &.
We now fix s < sg, to < min{dp, 7%}, and p < min{1/4,/to}. Then it follows
that By,(x9) C By, and furthermore that

O°%(z,t,r) <1+ g

for all r < 7p?, and (x,t) € Bay(xg) X (tg — p*,to]. Then it immediately follows
from White’s theorem that

C
A ()] € —e——
4500 < <=y
for all (x,t) € B,(xo) X (to — p?, to], where C' depends only on 7 and ey. These
estimates are then uniform in s for s < sy. Moreover, these curvature bounds,
along with those outside of the ball By /o, imply that Ty > min{0, do}.

Because the estimates are independent of s, they pass to the limit in the
varifold topology when we take a subsequential limit of the flows and so we

obtain a limiting flow (L;)o<i<1,, for which L; — L as varifolds.
Note that away from the singularities, we can obtain uniform curvature esti-

mates on |A| thanks to Corollary 5.7.4, so it follows that (L;) attains the initial

data L in C};, away from the singular points. O
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5.6 Construction of the approximating family

This section is the result of collaboration with Kim Moore.

In this section, we consider a Lagrangian submanifold L of C" with a singular-
ity at the origin which is asymptotic to the pair of planes P considered in Section
5.3. We approximate L by gluing in the self-expander > which is asymptotic to
P at smaller and smaller scales in place of the singularity. We will show that this
yields a family of compact Lagrangians, exact in By, which satisfy the hypotheses
(H1)-(H4) given in Section 5.4 which are required to implement the analysis in
that section.

Since L is conically singular we may write L N By as a graph over P N By
(possibly rescaling L so that this is the case). We may further apply the La-
grangian neighbourhood theorem (its extension to cones was proved by Joyce,
[34, Theorem 4.1]), so that we may identify L N By with the graph of a one-form
~v on P. Recall that the manifold corresponding to the graph of such a one-form
is Lagrangian if and only if the one-form is closed.

Moreover, since we have assumed that L is exact inside By, there exists u €
C*(P N By) such that du = . Since we know that v must decay quadratically,

we can choose a primitive for v which has cubic decay, i.e.,
|VFEu(z)| < Olz>~*. (5.6.1)

We saw in Theorem 5.3.1 that there exists a unique, smooth zero-Maslov self-
expander asymptotic to P. We may also identify the self-expander outside a ball
of radius ry with the graph of a one-form over P and, since a zero-Maslov class
Lagrangian self-expander is globally exact, there exists a function v € C*°(P\ B,,)
such that the self-expander is described by the exact one-form 1) = dv on P\ B,,.
Further, Lotay and Neves proved [39, Theorem 3.1]

vllerpm,) < Ce™™" forall r > ro. (5.6.2)

We will glue ¥, := v/2s¥ into the initial condition L to resolve the singularity.
Our new manifold, L*, will be the rescaled self-expander %* inside B, /g, the
manifold L outside B, and will smoothly interpolate between the two on the
annulus A(rgv/2s, 4).

To do this, we will glue together the primitives of the one-forms corresponding
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to these manifolds, before taking the exterior derivative. This gives us a one-
form that will describe L® on the annulus A(rv/2s,4), which ensures L® is still
Lagrangian and is exact in By. We will then show that this family satisfies the
properties (H1)-(H4).

Let ¢: Ry — [0, 1] be a smooth function satisfying ¢ =1 on [0, 1] and ¢ =0
on [2,00). Consider the one-form given by, for rov2s < |r| <4,0<s<c

Yo() = dwy(z) = d [p(s™*|z])2s0(2/V25) + (1 = p(s ™ *[a]))u(x)] . (5.6.3)

where we have that rgv/2s < s'/* < 2514 < 4 holds for all s < ¢. Notice that
in particular we must have ¢ < 1. Then v,(x) = ¥,(7) := V2s¢(z/v/25), the
one-form corresponding to the rescaled self-expander Y, for |z| < /4 and 7, = v
for |z| > 2s/4. Notice that since 7, is exact, it is closed and therefore its graph
corresponds to an exact Lagrangian.

We define the smooth exact Lagrangian L® by
- L°N B, 5 = 2N B, /5,

- L* N A(rov/2s,4) =graph 7,,

- L*\By = L\B4.

We will now show that L® satisfies (H1)-(H4).
For (H1), notice that both the self-expander and the initial condition individ-
ually satisfy (H1), and so for the rescaled self-expander, we have that

H"(S, N Br) = H"((V2s5) N Bg) = (25)"/*H"(E N Bpya:)
R

<en (7

) = D\ R".

Since L® interpolates between ¥ and L on a compact region, L® satisfies (H1).
We see that (H2) is satisfied because the Lagrangian angle of the initial con-

dition L and the self-expander ¥ are bounded, as is that of the rescaled self-

expander Y, by Lemma 5.2.1 (i) and the maximum principle, since the Lagrangian

angle of P is locally constant. When we interpolate between the two, we may

consider the formula for the Lagrangian angle of a Lagrangian graph, as seen

in [10, pg. 5]. This tells us that a Lagrangian graph in C" (over R™) given by
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(X1, ey Tpy up (X)), ..oy up (), where u: R™ — R u; = 8%-’ has Lagrangian angle
0= Z arctan \;,

where the \;’s are the eigenvalues of the Hessian of u. Since the eigenvalues of
the Hessian of u are some non-linear function of the second derivatives of u, if
the C? norm of u is small we have that the Lagrangian angle of the graph is
close to that of the Lagrangian angle of the plane that u is a graph over. So we
can uniformly bound the Lagrangian angle of the graph. Since in our case, the
Lagrangian angle of ~, is given by the sum of arctangents of the eigenvalues of
the Hessian of the function ws, and, as we will show when we prove (H4), the
C? norm of w, is small, this means that we can uniformly bound the Lagrangian
angle of the graph ~,, and so the Lagrangian angle of L°.

On the initial condition, since X = Jx, we have that d3;, = N, = (Jx)T.
Therefore, 7, is bounded quadratically, and so is the primitive for the Liouville

form of L*\B(2s'/4). On the self-expander, applying the maximum principle to

Lemma 5.2.1 (ii), we have (s (the primitive of M|s,) is bounded by Sp, and so
185(x)| < |Bp(z)| < Clz|? for || < s*/*. So it remains to check this still holds
where we interpolate. We perform a calculation similar to that in the proof of
Lemma 5.2.1(ii). We have that, for L the manifold described by the graph of

the one-form tdws,

d
—A
dt

Ly = d(JVUJSJ/\

Ls) + JVw,adA

Ly = LyvwA Ls-

Since d\ = w and JVw,w = dw, and possibly adding constant to 8; dependent

on s and t, we have that

dfy
dt

= —2w;, + (x, Vws)

L$s

where df; is equal to the restriction of the Liouville form A\ to graph of tvs.
Integrating, we find that

1
8 = Bp — 2w, +/ (2, V) g dt,
0

where [Sp is the primitive for A on P. Now, w, is bounded independently of s by
D(1 + |x]?), using (5.6.1) and (5.6.2), as is (x, Vw,), using Cauchy-Schwarz and
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the estimates (5.6.1) and (5.6.2) so we find that 5* is bounded independently of

s on the annulus A(s'/*,2s'/%). Therefore, we have that
0°(2)| + |°(2)| < Da(|2]* + 1)

and so (H2) is satisfied.

To show that (H3) is satisfied, recall that we define L° as L° N B, 5 =
¥sN B, /55 L*\By = L\ B, and we interpolate smoothly between the two, which
exactly happens when s'/4 < |z| < 2s/4. Therefore when we rescale by 1/1/2s,

we have that L° N B,, = ¥. So it remains to check convergence outside this ball.

On the annulus 7y < |z| < 4/v/2s, L* is identified with the graph of the
following one-form

Fs(@) = d (s |z]yo(a) + (1~ 90(81/4I$|))T :

From this expression, noticing that

3/2,.3
ulv2se) Q)P o e
2s S
we see that as s — 0, 75 — dv = 9, the one-form whose graph is identified with
Y. This says that, outside B,,, L* — ¥ as s — 0 smoothly. Therefore we actually

. 1
have stronger than the required ;. convergence.

Finally, we check that the second fundamental form of L is uniformly bounded
in s. We have that the second fundamental form of > must be bounded, and if
A is the second fundamental form of L, rescaling L by 1/4/2s means that the
second fundamental form scales by V/2s. Since v/2s < 1, we can uniformly bound
both second fundamental forms so that L*, which is a combination of both ¥ and

1/4/2sL, has second fundamental form uniformly bounded in s.

To see (H4), first notice that since we can write L*NA(r¢v/2s,4) as a graph over
PN A(rov/2s,4), we have that L® has the same number of connected components
as P in the annulus A(rgv/2s,4).

We now must estimate 7. Firstly, note that we have

IV (u(/V2s))] < |(25) H2(VR0) (@ /v/25)] < O(28) 2 P2 (5.6.4)

161



where we have used (5.6.2).
We will need different estimates on 2sV?v(z/v/2s) and 2sV3v(x/+/2s), which

we find as follows.

2 \/ |l‘|
25V 2u(x/V/25)| < Ce bzl /2s — e—blal?/2s

V2s o—blal?/2s 11 2] o—blzl?/2s < CV o—blal? /25
|z V2s ||

where b = b/2 and C' = Ce~/2/v/b, since the function y — ye "’/2 is bounded
independently of y (by e=/2/4/b) on R, and so C'is independent of s.

—C (5.6.5)

A similar calculation, this time noticing the uniform boundedness of the func-

tion y — ye /2 for y > 0 we can show that

V2 —b|:c| /23

125V (x/\/_)|<C’| 5 (5.6.6)

where we make C' (which remains independent of s) larger if necessary and b

smaller (which does not affect the previous estimates).

We have, using the definition in (5.6.3),

sl = [Vws| = ¢ (5™ al)25* v (/V25) + p(s™4|2]) 25V [v(2/V25)]
sV (s ayule) + (1 = @(s™a])) V()]

and, using that s34 = /ss¥/* < /s since s < 1, (5.6.1) and (5.6.4) imply that

|’Vs| < \/%Ce_blz‘Q/Qs—i—@Ce_blz‘2/2$+0|l’|3_l —|—O|ZL‘|2
< C[Vase P 4 o] (5.6.7)

where we have made C' larger.

Now consider

Vsl = [V2ws| = [ (s |]) 2520 (93/\/_)+90’( “a])4sY 1V [v(z/V/25)]
+ (s~ al)25 V2 [u(a/V2s)] — 572" (s7  a Ju(x)
=257 (7 ) V() + (1~ 90(8’1/4|w|)) “u()]

Using that on the support of ¢’ and ¢” we have (s < 1) /5 < s/4 < /2v/2s/|x|,
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and applying the estimates (5.6.4) and (5.6.5)

V2s V25  /2s
+ +
Ee I
V2 2
<C [Hse—”' /25 4 |x|] . (5.6.8)
x

Finally, performing a similar computation to those above and combining (5.6.4),

(5.6.5) and (5.6.6) we find that

Vr=e K )6_’)'35'2/25 o[22 o |2 + Ja

V2, < C l@ebiﬁ/% + 1] : (5.6.9)

|2

Combining (5.6.7), (5.6.8) and (5.6.9), we have that
Vs 4 12| [Vs| + |22 V2s| < Ds (|x|2 i \/%e—b|g;|2/25) 7

where Dj is a constant independent of s. Therefore (H4) is satisfied.

5.7 Miscellaneous technical results

We collect in this section a few technical results about mean curvature flow in
high codimension that were used throughout this chapter. The first is a graphical
estimate. Specifically, if the initial manifold can be written locally as a graph
with small gradient in some cylinder, then the submanifold remains graphical
in a smaller cylinder and we retain control on the gradient. To state this more
rigorously we first introduce some notation. The notation and statement of the
result are as in [31]. Given any point z € R"** we write z = (£, ), where # is
the projection onto R™ and # is the projection onto R¥. We define the cylinder
Cr(zo) C R™* by

Cp(z) = {x € R"™||2 — 20| <, |T — Zo| < 1}

Furthermore, we write B"(xq) = {(#, o) € R"™||2 — 2| < 7}

Lemma 5.7.1. Let (M]")o<t<7 be a smooth mean curvature flow of embedded n-
dimensional submanifolds in R™* with area ratios bounded by D. Then for any

n > 0, then there exists €, 6 > 0, depending only on n, k, n, D, such that if
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x9 € My and My N Cy(xg) can be written as graph(u), where u: B (xg) — RF

with Lipschitz constant less than ¢, then
M; N Cs(xg)  t€[0,6°)N[0,T)

is a graph over Bj(xo) with Lipschitz constant less than n and height bounded by
no.

The proof can be found in [31]. Next we prove that if an initial manifold
M is close to some smooth manifold ¥ in C1®, then one gets estimates on the
density ratios that are independent of M. See Section 5.3 for the definition of

two manifolds being close in O,

Lemma 5.7.2. Let ¥ be a smooth manifold with bounded curvature and let
(My)icpo,ry be a solution of mean curvature flow. Fiz g > 0, a < 1. There
are € = (X, e0,) > 0 and ¢1 = q1(2, €0, ) > 0 such that for every R > 2, if M
is e-close to X in C1*(Bg) then for every r*,t < q, and y € Bg_1 we have

O(y, 1) < 1+ .

Proof. This follows immediately from Lemma 5.7.1. Indeed the curvature bound
on Y means that there is a uniform radius r such that for any z € 3, ¥ N C,.(z)
is (after maybe rotating) a graph with small gradient over the tangent plane to
Y} at x. By requiring that ¢ is small enough we can therefore ensure that any M,
which is e-close to ¥ in CV*(B,(x)) is also a graph with small gradient. It only
remains to apply Lemma 5.7.1. ]

5.7.1 Local curvature estimates for high codimension graph-

ical mean curvature flow

In [15] Ecker and Huisken proved celebrated curvature estimates for entire graphs
moving by mean curvature in codimension one, they then localised these in [16]
to prove interior estimates for hypersurfaces moving by mean curvature flow.
Analogous results in higher codimension have been proved by Mu-Tao Wang in
[58] and [59] respectively. In light of examples of Lawson and Osserman [38] one
needs to assume an additional ‘K local Lipschitz condition’, such a condition is in

fact satisfied by any C! manifold at small enough scales, so for our purposes there
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will be no problems applying the estimates. We would like to use the estimates
derived in [59] without the time localisation, so we will briefly outline the changes
to the proof, though all calculations remain analogous to those used by Wang or
Ecker-Huisken. We first introduce the notation used by Wang in [58, 59]. We
consider a mean curvature flow (M;)c,r) and suppose that locally M, is given
by the graph of some function u,: U C R™ — R over R”. As shown by Wang,
if we define %€) to be the Jacobian of the projection of M; onto R™, then one can

calculate that

1
\/det(éij + Diut : Djut) \/H 1 + )\2

*() =

where \; are the eigenvalues of y/(du;)Tdu;. Moreover, for € > 0 small (depending

only on the dimensions n and k), we have that if
det(éij + D;uy - Djut) <1+4-¢,

(this is precisely the K local Lipschitz condition of [59] with K = 1/(1+¢)) then

x() satisfies the evolution inequality

Z*QZA*Q—I—;*QMP.
Indeed this follows immediately from calculations in the proof of Theorem B in
[58]. To simplify notation slightly we define n := %2, then one can estimate

(following [58])

d P 9
p > = _ p .
dt AnP + <2 p(p 1)n5> Ui |A|

We also recall the evolution of the second fundamental form under mean curvature

flow yields the differential inequality
d o 2 2 4
A < AJAP = 2[VIA[]" + ClAf,

where C' is a dimensional constant. We see that these estimates precisely tell us
that we are in the correct setting to apply Lemma 4.1 of [59] with the choices
h = |A| and f = nP. Following the proof of Lemma 4.1 we find that with ¢
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defined as
o(z) :==x/(1 — kx)
with kK > 0 to be determined, we have the following evolution inequality for

g = @(n )|AJ]?

d 2K
— —Alg< -20k*> — ——— ___|Vn P20 — 201n°’VnP.Vg.
(dt ) g < e m,%)zlvn %9 — 2pn™"Vn P - Vg

We then introduce the cut-off function & := (R* — r)? where R > 0 is a fixed

radius and r(z,t) satisfies

(-4)r

then following [16] we arrive at

<cln k) V[P <en, k),

d
( — A) 9¢ < —Cr€g* = 2(pn™ VP + £VE) - V(g€)

dt
+ k 14 L +R?|g
c(n, k) =2 r .

It is possible now to also localise in time as in [16], which would get us to the

estimates in [59], but for our purposes this is unnecessary, so instead we now
suppose that m(T) = SUPg<i<r SUD (e, |r( <2y 9€ 15 attained at some time

to > 0, then at a point where m(7T') is attained we have

1
2 2
Cr€g” < c(n, k) (1 + /{77_210) Rg.

Multiplying by £/Ck we have

m(T) < R <1+ {2 )R?
Kn~<P

We now choose .
= = inf 2,
2 {zeMy|r(z,t)<R2 t€[0,T]}
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We also fix 6 € (0, 1) and observe that in the set {z € M;|r(z,t) < 0R?,t € [0,T]}
we have ¢ > 1 (since n™2" > 1) and € > (1 — 0)?R* so

AP — 0)°R" < g¢ < LR (1 P ) R

-7 T Ck K2

Q

Finally as 7% > 1 and xk < 1/2 we have that (1 + 1/kn~%") < 2/k, so the
estimate
c(n, k) c(n, k)

A 2 S = sup 77741)’
‘ ’ K2R2(1 _ Q)Q R2(1 — 9)2 {zeM;|r<R2 t€[0,T)}

holds in the set {x € M|r(x,t) < OR? t € [0,T]}. The preceding discussion

establishes the following theorem.

Theorem 5.7.3 (High codimension interior estimate). Let R > 0 and suppose
that Kgz := {(x,t) € My|r(z,t) < R*} is compact and can be written as a graph
over some plane for t € [0,T]|. Suppose further that if the graph function is
denoted by u, that

det(d;; + Diu- Dju) < 1+c¢,
where € > 0 depends only on n and k. Then for any t € [0,T] and 6 € (0,1) we

have

A 2 —2p
sup |A]* < max {Rz(dn)z supn~ ', sup "90(77)} : (5.7.1)

1-— 9) Ko {zeMp|r<R2} (1 - 0)2

6R2

If we denote by (-)T projection onto the plane over which M, is graphical,

d
— Al 27 =
(dt >\x| 0

for x = F(p,t) some point in M;. Therefore, defining r(z,t) := |x

(-2)r

Vr|? = 4|31:T|2|(V317)T|2 < ¢(n, k)r.

then it’s easy to see that
we have

T’Q

=2|(Va)"|* < c(n, k),

With this choice of r» we have the following corollary.
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Corollary 5.7.4. Under the assumptions of Theorem 5.7.3, with the particular

choice r(x,t) = |27|? we have the estimate

. c(n, k) 4 |A]P(n=?P)
sup |A]? < min { sup  n P, sup —
Bor (y0) X [0,T] R2(1 = 0)? Br(yo)x[0,1] (Br(yo)x{oyp (1 —0)?

(5.7.2)

where Br(yo) denotes a ball centred at yo with radius R in the plane.
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